
Algorithmics

Midterm #4 (C4)

Undergraduate 2nd year (S4)
Epita

5 March 2019 - 14 : 45

Instructions (read it) :

✷ You must answer on the answer sheets provided.

– No other sheet will be picked up. Keep your rough drafts.

– Answer within the provided space. Answers outside will not be marked: Use your drafts!

– Do not separate the sheets unless they can be re-stapled before handing in.

– Penciled answers will not be marked.

✷ The presentation is negatively marked, which means that you are marked out of 20 points and the
presentation points (maximum of 2) are taken off this grade.

✷ Code:

– All code must be written in the language Python (no C, Caml, Algo or anything else).

– Any Python code not indented will not be marked.

– All that you need (classes, types, routines) is indicated where needed!

– You can write your own functions as long as they are documented (we have to known what
they do).

In any case, the last written function should be the one which answers the question.

✷ Duration : 2h

1



Algorithmics
Midterm #4 (C4) – 5 March 2019 - 14 : 45

Undergraduate 2nd year (S4)
Epita

Exercise 1 (Cut points, cut edges – 5 points)

Figure 1: Graph G1

1. Give the cut points of G1.

2. Give the cut edges of G1.

3. Give, using lists of edges, the biconnected components of G1 (one component per line).

4. Give, for each vertex of the graph G1, the table of prefix and higher values obtained during the
depth-first search traversal of the graph G1. You will use for higher the following formula:

higher(x) = min







prefix(x)
higher(y) ∀ (x, y) discovery edge
prefix(z) ∀ (x, z) back edge

As usual, the root of the traversal is the vertex 1 and successors are processed in increasing order.

2



Algorithmics
Midterm #4 (C4) – 5 March 2019 - 14 : 45

Undergraduate 2nd year (S4)
Epita

Exercise 2 (I want to be a tree – 8 points)

Figure 2: Not a tree yet

The aim of this exercise is to turn any graph into a tree while minimizing the number of modifications.

1. Give two definitions of a graph that is a tree

2. We perform a depth-first search of a graph:

(a) What are the edges that can be removed during the traversal without increasing the number
of connected components?

(b) Apply to the graph in figure 2: give the list of the edges that will be removed during the
traversal where vertices are choosen in increasing order.

3. During the depth-first search, we assign to each vertex the number the component it belongs to
(from 1 to k, if there are k components):

(a) How many edges have to be added to make the graph connected?

(b) What are the edges to add during the traversal to make the graph connected?

(c) Apply to the graph in figure 2: give the list of the edges to add to make it connected.

4. Write the function that

• builds the connected component vector cc of the original graph ;

• adds the edges to the graph to make it connected ;

• removes "useless" edges from the graph (without increasing the number of connected compo-
nents).

3



Algorithmics
Midterm #4 (C4) – 5 March 2019 - 14 : 45

Undergraduate 2nd year (S4)
Epita

Exercise 3 (Condensation – 4 points)

Let G be a digraph with k strongly connected components: C0, C1, . . . , Ck−1. The condensation of
G is the digraph GR = < SR, AR > defined by:

• SR = {C0, C1, · · · , Ck−1}

• Ci → Cj ∈ AR ⇔ There exists at least an edge in G with its head in the strongly connected
component Ci and its tail in the strongly connected component Cj .

Figure 3: Digraph G1

The aim here is to build the condensation of a graph G. We have the list of the strongly connected
components of G (each component is a list of the vertices it contains).

For instance, the following list is the component list of the graph in figure 3:

1 scc = [[2, 3, 4, 6, 7, 8], [9], [5], [0, 1]]

Write the function condensation(G, scc) that builds the condensation GR of a digraph G, with scc

its component list. The function returns Gr and the vector of components: a vector that gives for each
vertex the number the component it belongs to (the vertex in GR).

For instance, with G1 the graph in figure 3:

1 >>> (Gr, comp) = condensation(G1 , scc)

2 >>> comp

3 [3, 3, 0, 0, 0, 2, 0, 0, 0, 1]

4



Algorithmics
Midterm #4 (C4) – 5 March 2019 - 14 : 45

Undergraduate 2nd year (S4)
Epita

Exercise 4 (Digraphs and Mystery – 3 points)

Figure 4: Digraph G2 Figure 5: Digraph G3

1 def __test(G, x, p, c):

2 c += 1

3 p[x] = c

4 rx = p[x]

5 for y in G.adjlists[x]:

6 if p[y] == 0:

7 (ry , c) = __test(G, y, p, c)

8 if ry == -1:

9 return (-1, c)

10 rx = min(rx , ry)

11 else:

12 rx = min(rx , p[y])

13

14 if rx == p[x]:

15 if p[x] != 1:

16 return (-1, c)

17

18 return (rx , c)

19

20 def test(G):

21 p = [0] * G.order

22 c = 0

23 (r, c) = __test(G, 0, p, c)

24 return (r != -1) and (c == G.order)

We assume that the adjacency lists are sorted in increasing order in the graph in parameter.

1. Let G2 and G3 be the digraphs in figures 4 and 5. For each of the following calls:

• how many calls of __test have been done?

• what is the result returned by test?

(a) test(G2)

(b) test(G3)

2. Let G be a digraph. What is the information returned by test(G)?

5



Algorithmics
Midterm #4 (C4) – 5 March 2019 - 14 : 45

Undergraduate 2nd year (S4)
Epita

Exercise 5 (Saving Algernon – Bonus)

Algernon, the famous mouse, has been kidnapped by a research laboratory member, who brings it
to his lab. But Algernon is clever and has managed to escape, taking advantage of the opening of the
laboratory door. We must find Algernon: during the night it might have gone anywhere and now it can
be in a lab or stuck in an air vent.

Here is a map of the research laboratory:
• 10 labs (Lab 1 to Lab 10), one for each researcher;
• the air vents, represented by the black squares (from a to k): a mouse can go in but cannot go out

and each air vent leads to a dead end ;
• the elevator ("ascenseur"), which leads directly outside ;
• and, in dashed lines, the motion detectors (numbered from 1 to 12).

Motion detectors are rather archaic: simple mechanical indicators that count passage number (one cannot
know when they have been triggered).

Here are the numbers of detections during the night:
detector # 1 2 3 4 5 6 7 8 9 10 11 12

nb detections 2 1 3 3 1 3 0 2 2 3 2 1

Which researcher is the kidnapper? Where is Algernon now?

1. (a) Which researcher is the kidnapper?

(b) Where is Algernon now?

2. Justify (use the given map to illustrate your justification).

6



Algorithmics
Midterm #4 (C4) – 5 March 2019 - 14 : 45

Undergraduate 2nd year (S4)
Epita

Appendix

Classes Graph and Queue are supposed imported. Graphs we manage cannot be empty.

Graphs

1 class Graph:

2 def __init__(self , order , directed = False):

3 self.order = order

4 self.directed = directed

5 self.adjlists = []

6 for i in range(order):

7 self.adjlists.append ([])

8

9 def addedge(self , src , dst):

10 self.adjlists[src]. append(dst)

11 if not self.directed and dst != src:

12 self.adjlists[dst]. append(src)

13

14 def removeedge(self , src , dst):

15 self.adjlists[src]. remove(dst)

16 if not self.directed and dst != src:

17 self.adjlists[dst]. remove(src)

Queues

• Queue() returns a new queue

• q.enqueue(e) enqueues e in q

• q.dequeue() returns the first element of q, dequeued

• q.isempty() tests whether q is empty

Others

• on lists: len

• range.

Your functions

You can write your own functions as long as they are documented (we have to know what they do).
In any case, the last written function should be the one which answers the question.

7


