Computer Architecture — EPITA— S4 —2018/2019

Key to Final Exam S4
Computer Architecture

Duration: 1 hr 30 min
Write answers only on the answer sheet.

Exercise 1 (4 points)
Complete the table shown on the answer sheet. Write down the new values of the registers (except the

PC) and memory that are modified by the instructions. Use the hexadecimal representation. Memory
and registers are reset to their initial values for each instruction.

Initial values: DO = $1234FFF2 A0 = $00005000 PC = $00006000
D1 = $00000070 Al = $00005008
D2 = SOOOOFFFD A2 = $00005010

$005000 54 AF 18 B9 E7 21 48 CO
$005008 (9 10 11 C8 D4 36 1F 88
$005010 13 79 01 80 42 1A 2D 49

Exercise 2 (3 points)
Complete the table shown on the answer sheet. Determine the missing number for each addition in order

to match the given flags (use the hexadecimal representation). If multiple answers are possible, choose
the smallest one.

Exercise 3 (4 points)
Let us consider the following program. Complete the table shown on the answer sheet.

Main move.l #574C2,
next1 moveq.l #1,
cmpi.w #$94C2,
blt next2
moveq.l #2,
next2 clr.l
move.l #588888888,
loop2 addqg.l #1,
sub.b #$10,
bhi loop2
next3 clr.l
move.b #5587,
loop3 addqg.l #1,
dbra ,loop3 ; DBRA = DBF
next4 clr.l
move.w #S1F,
loop4 addq.l #1,
dbra , Lloop4 ; DBRA = DBF

Key to Final Exam S4 1/8

Computer Architecture — EPITA—S4 —2018/2019

Exercise 4 (9 points)
All questions in this exercise are independent. Except for the output registers, none of the data or ad-

dress registers must be modified when the subroutine returns.

The aim of this exercise is to make a background fade out. That is to say, to make the background color
gradually turn black.

A color is made up of three primary colors:
The primary red color.
The primary green color.
The primary blue color.

These three primary colors are encoded in a 32-bit word: 00RRGGBB 6
RR represents the primary red color (8-bit unsigned integer between 0 and FFjs).
GG represents the primary green color (8-bit unsigned integer between 0,6 and FF).
BB represents the primary blue color (8-bit unsigned integer between 0,6 and FF).

For instance:
If the background color is 002B048D ¢, the value of its primary red color is 2B, that of its primary
green color is 04,6 and that of its primary blue color is 8Djs.
The encoded value of the black color is 00000000 .
The encoded value of the white color is 0OFFFFFF .

1. To begin with, write the Decrement subroutine that decrements an 8-bit unsigned integer by limiting
its minimum value to zero.
Inputs: DO0.B holds an 8-bit unsigned integer.
D1.B holds an 8-bit unsigned integer.
Output: DO0.B = D0.B — D1.B if the result is not negative.
D0.B =0 if D0.B — D1.B is negative.

Be careful. The Decrement subroutine must contain 4 lines of instructions at the most (RTS in-
cluded).

Key to Final Exam S4 2/8

Computer Architecture — EPITA—S4 —2018/2019
2. By using the Decrement subroutine, write the Darker subroutine that decrements the three primary

colors (red, green and blue) of a color and that limits each of them to zero.

Inputs: DO.L holds a 32-bit encoded color (0ORRGGBB;).
D1.B holds an 8-bit unsigned integer.

Output: DO.L returns the new color whose each primary color has been decremented by D1.B.
When a primary color has reached zero, it remains at zero.

For instance:

Main move.l #$000c0306, ; DO.L = SPPOCO306
move.b #4, ; D1.B = 504
jsr Darker ; DO.L = 500080002
jsr Darker ; DO.L = 500040000
jsr Darker ; DO.L = $00000000
jsr Darker ; DO.L = $00000000

Be careful. The Darker subroutine must contain 7 lines of instructions at the most and you can use
the JSR, ROR, SWAP and RTS instructions only.

3. The graphics card uses the 32-bit encoded value held in the BackgroundColor memory location. As
soon as this value is changed, the background color on the screen is modified accordingly. We want
this color to go black gradually.

By using the Darker subroutine, write the FadeOut subroutine that gradually decrements the three
primary colors (red, green and blue) to pitch-black.
Input: AO0.L points to the memory location that holds the 32-bit encoded color to modify.
Output: The color held in the memory location pointed at by A0.L is modified.
Each primary color of the 32-bit encoded color is decremented one by one.

For instance, let us consider the following main program:

Main lea BackgroundColor,
jsr FadeOut
F
FIP

BackgroundColor dc.1 $0043021B

It will modify the contents of BackgroundColor as shown on the table below. Each line of this table cor-
responds to an iteration of a loop.

Key to Final Exam S4 3/8

Computer Architecture — EPITA—S4 —2018/2019

Note:

BackgroundColor

$0043021B

$0042011A

$00410019

$00400018

$002A0002

$00290001

$00280000

$00270000

$00020000

$00010000

$00000000

«— Initial color

«— Black color

The execution time of an iteration is not to be taken into account in this exercise (if the fade-out effect is

too fast, it will be easy to slow it down).

Be careful. The FadeOut subroutine must contain 8 lines of instructions at the most (RTS included).

Key to Final Exam S4

4/8

Computer Architecture — EPITA—S4 —2018/2019

EASy68K Quick Reference v1.8

hitp:/iwww.wowgwep.com/EASy68K.htm

Copyright © 2004-2007 By: Chuck Kelly

Opcode | Size | Operand | CCR Effective Address s=source, d=destination, e=gither, i=displacement Dperation Description
BWL s.d EMEVC | On | An | (An) | (An)+ | -(An) | (idn) | (iAnRn) [absW [&bs.L| (iPC) | PCRR) |#n
ABCD |B |Dy.Dx Rt e | - - | - - - - - - - | Dy + D + X = Oxg Add BCO source and eXtend bit to
~(hy).-(Ax) - |- e | - - |- | -(W)g + -lAedg + X =-(Ax)g | destination, BCD result
ADDT [BWL [s.0n wrwwk ol s | s 5 g g s | s | s s |5 [s+Dn=>Dn Add binary (ADDI or ADDQ is used when
Dnd gld'|d | d|d|d d d | d| - - |- |bn+d>d source is #n. Prevent ADDD with #nl)
ADDAY | WL{shn [-——-—- slefs| s |5 |s 5 5 | s | s 5 |s|s+hn=>Mn hdd address (W sign-extended o L)
ADDI® [BWL [#n.d Faadk gl -l d | d | d | d d d | d| - - | s |#n+d>d dd immediate to destination
ADDD T [BWL [#n.d wrwwwl g (d| d | d d d d d | d - s |#n+d>d hdd quick immediate {#n range: | ta 8)
ADDX | BWL | Dy.Dx falahl I I R - - - - | - - | - |Dy+Dx+ X2 0x Add source and eftend bit to destination
~(Ay) - (A - - E - - - | -Ohy) +) + X ()
AND™ TBWL [5.0n =**00|eg|-[s | s |35 | s 5 s [s | s t |5 [sAND Dn > On Logical AND source to destination
Dnd g|-|d | d | d d d d [d| - - - |DnANDd > d [ANDI is used when source is #n)
ANDI® |BWL [#nd 004 - d|d | d | d d d | d - |s|#nANDd>d Logical AND immediate to destination
ANDI* |B |#nCCR -] -] - - | - - - | - - | s |#n AND CCR = CCR Logical AND immediate to COR
ANDIY | W [#nSR - - | s |#nAND SR = SR Logical AND immediate ta SR (Privileged)
ASL | BWL | DDy wawwnlg | - - - |- }I:::] g |Arithmetic shift Oy by Dx hits left/right
ASR #nly dl-1-1-1-1- - - | - - s v |Arithmetic shift Oy #n bits L/R (#n: | to)
Wo|d |- d [d | d | d d d | d BN —t hrithmetic shift ds | bit left/right (W anly)
Bee [BWY [address” |[-—--- - - - - - - - | - - | - |ifec true then Branch conditionally (e table on back)
address = PC (8 or IB-hit + offset to address)
BCHG |8 L{Dnd =T [-[d]d [d]d d d | d - | - [MOT(bit numberofd) = I | Set I with state of specified bit in d then
#nd di-{d| d d d d d | d - s |NOT(hitnof d)=> bitnofd |invert the hitin d
BCLR |B L|Dnd — 1 |-1d 1] d d d d d | d - - [NOT(bit numberof d) = I | Set L with state of specified hit in d then
#nd d|-1d|d|d]d d d | d - | s |0 - bit numher of d clear the bit ind
BRA [BW [address” [-———- -1 - - - - - - | - - - | address = PC Branch always (8 or 16-bit offset to addr)
BSET |8 L|Dnd ——r—=Te-Td 1 d d d d d | d - - [MOT(bitnofd) =1 Set I with state of specified hit in d then
#nd d|-1d|d|d]d d d | d - |5 |l >hitnofd set the bitind
BSE [BW' |address® [————- -1 - - - - - - - - - - [PC = -ISP): address =» PC | Branch to subroutine (8 or 16-hit £ offset)
BIST [B L{Dnd —=v—=Te'[-Td] d [d d d d [d | d d - |NOT(bit Dnofd) 2 1 Set I with state of specified hit in d
nd d|-1d| d d d d d | d | d d s |NOT(hit #nafd) > 1 Leave the bit in d unchanged
CHK W |s0n “*U000fg|-| s | s | s | s 5 s | s | s s | s |ifOn<0or On>s then TRAP | Compare On with 0 and upper bound (s)
CIR |BWL |d -0100)d|-fd | d | d d d d [d | - - -|0=>d Clear destination to zern
CMP™ [BWL |s.0n B EEERERE 5 5 | s | s g |5 [setCCR withOn-s Compare On to source
CMPA™ | WL [shn “rvvwlslels | s | s | s 5 s | s | s s | s |setCOR withAn-s Compare An to source
CMPI® [BWL [#nd e - fd | d | d [d d d [d | - - | s |setGOR withd - #n Lompare destination to #n
CHPM® [BWL[(h)ethde =2 -T-1 - [e [- | - - - | - - | - |set CCR with (Ax) - (Ay) Compare (Ax) to (Ay): Increment A and Ay
T — - - - - - |if ec false then { Dn-1 = On | Test condition, decrement and branch
if On <> -1 then addr =>PC } | (16-bit + offset to address)
DIvs W |s0n ~*vw0fg |- s | s 5 g g s | s | s 5 s | £32hit On / IBhit s = =00 |Dn= [IB-hit remainder, B-bit quotient]
pivu W |s0n =***0fe |- s | s 5 g g 5 | s | s 8 5 | 32hit On / 1Bhit s = On [n= [IB-hit remainder, IB-hit quatient]
EOR* [BWL [Dnd =*00)g|-[d | d | d|d d d [d| - - [T |0nXORd>d Logical exclusive OR Dn to destination
EORI™ [BWL [#n.d 00| d|-fd | d | d | d d d | d - | s |#nd0Rd > d Logical exclusive OR #n to destination
EORI® [B |#nCCR -] -] - - | - - - | - - | s |#n JORCCR = CCR Logical exclusive OR #n to COR
EORI® | W [#aSR - - | s |#n MOR SR = SR Logical exclusive OR #n to SR (Privileged)
EXG L{ReRy — [==-—- e - - | - |register € - reaister Exchange registers (32-bit only)
EXT WL (On -*ro0| 4 | - - - | - |0nB = DnW | DnW = Dnl |Sign extend (change B ta W or Wto L)
ILLEGAL, | == -1-1 - - - -l - - - - |PC=>-(35P); SR=>-(88P) |Benerate lllegal Instruction exception
JMP d |- -1 d d d d | d | d d |- [Td=>rpC Jump to effective address of destination
J3R d |- -1 d d d d [d | d d - [PC >8P Td > PC push PL, jump to subroutine at address d
LEA Lishn |- el s 5 5 s | s | s s |- [Ts>Mn Load effective address of s to An
LINK An#n |- -] - - - - - - - | - |An = -(8P): SP = In; Create local workspace on stack
8P+ #n > 8P (negative n to allocate space)
LSL |BWL|DxDy ROV g | - - - - é:] . Logical shift Oy, D« bits left/right
LSR #nly dl-|-1 - - |- - - | - - |s X |Logical shift Oy, #n bits L/R (#n:] to 8)
W |d l-ld [d [d]d] d |d]|d e Logical shift d | bt left/right (W enly)
MOVE ™ [BWL |s.d =005 e | e | & | & e e | e | s Y Mave data from source to destination
MOVE | W |s[ER s|-|s|s |5 |s 5 5 | s | s s |s|s=>CCR Move source to Condition Code Register
MOVE | W |s.SR s|-]s | s 5 g g s | s | s 5 s s> SR Move source to Status Register (Privileged)
MOVE | W [SRd [-—--- df-{d{d[d]d d d | d] - - |- |SR=>d Move Status Register to destination
MOVE L{USPAR [~ Sl - -1 - - - - | - USP = An Mave User Stack Pointer to An (Privileged)
An ISP sl - - - |- - - - - - |- |An > UEP Mave An to User Stack Pointer (Privileged)
BWL s.d XMEVC| On | An | (An) | (An)+ | -(An) | (iAn) | (iAnRn) |abs W |abs L] (LPC) | (iPCRn) | #n

Key to Final Exam S4 — Appendices

5/8

Computer Architecture — EPITA—S4 —2018/2019

Revised by Peter Csaszar, Lawrence Tech University — 2004-2006

Opcode | Size | Operand | CCR Effective Address s=source, d=destination, e=gither, i=displacement [peration Description
BWL sd XMEVC| On | An| (An) | (An)+ | -(An) | (iAn) | (CAnRn) |abs W |abs L) (iPC) | (iPC.Rn) | #n
MOVEA'| WL [shn [———- sle|s | s 5 5 g s | 5 | s g s |s>hn Move source to An (MOVE s.An use MOVEA)
MOVEM' | WL [Rn-Rnd |-—-—- - df -] d | d d d | d - | - |Registers > d Move specified registers to/from memory
s.in-An -l s | s - | s 5 s | s | s s | - |s = Registers (W source is sign-extended to | for fn)
MOVEP | WL |[Dnfidn) |=—=-- |- d = | - {0n = (iAn).(i+2 An)..(i+4.A. [Move On to/from alternate memory bytes
{i.An).0n d]- g = | - [lidn) = Dn.fi+2 An)..(i+4.A. [(Access only even or odd addresses)
MOVED®| L |#n.Dn -0 | - - - |s|#n=>0n Move sign extended 8-bit #n to In
MULS | W |sDn “**00)g|-[s | s | s | s 5 s | s | s s | s |#iBbits * =lBhit On = =0n [Multiply signed I6-bit; result: signed 32-hit
MULL | W |sDn ~**00)g|-[s | s | s | s 5 s | 5| s s | s |IBbit s * 16hit Dn = On Multiply unsig'd 16-bit: result: unsig'd 32-bit
NRCD |B |d rorur g |- d | d d d d d | d | - - -|0-dg-X=>d Negate BCO with eltend, BCO result
NEG |BWL|d wrwww gl - d | d d d d d | d - -|0-d=>d Negate destination (2's complement)
NEGX |BWL |d wewwrlg -l d | d [d | d d d | d - - |0-d-X>d Negate destination with eXtend
NOP | | [-1 -1 - - | - - E - | - [None No operation ocours
NOT [BWL|d =**00|d|-[d | d [d]|d d d | d - |- |NOT(d) > Logical NOT destination (I's complement)
ORT [BWL|s.Dn ~**00)g|-[s | s | s | s 5 s | s | s s |5 [sORDn=>Dn Logical OR
Ond e|-|d|d | d|d d d | d| - - |- |0nDRd=>d (OR! is used when source is #n)
ORI [BWL [#nd =00 d|-[d | d [d]|d d d | d - s |#n0Rd>d Logical OR #n to destination
ORI™ B |#nCCR - -] - - - - - - | s |#nORCCR = CCR Logical OR #n to CCR
ORI | W [#nSR - - | s |#nOR SR > SR Logical OR #n to SR (Privileqed)
PEA Lls |- -l s 8 5 s | s | s g |- [Ts=>-(P) Push effective address of s onto stack
RESET | | |- - - - - - - - - | - | Assert RESET Line Issue a hardware RESET (Privileged)
ROL [BWL{DxDy —xxorg |- R - e ——a] Rotate Oy, Ox bits left/right {without ¥)
ROR #n.ly d|- - - - - - - s Ratate Dy, #n bits left/right (#n: | to 8)
W4 e e lala] ¢ |44 - |- ==L |Rotate d I it eft/right (W cnly)
ROXL | BWL [DDy R EE - - - - | - - - “ﬁ Rotate Oy, Ox bits L/R, ¥ used then updated
ROXR #n.ly |- - - - -] - - |s ‘ ‘J—:|:nl Ratate Dy, #n bits left/right (#n:| tupH]
Wo|d |- d [d | d | d d d | d N ——— Rotate destination I-bit left/right (W only)
RTE - - - - - - - | - |(8P)+ = 8R:(8P)+ > PC |Return from exception (Privileged)
RTR - - - | - |(8P)+ = CCR, (SP)» = PL |Return from subroutine and restore COR
L T T e - - - - [(8F)+ = PC Return from subroutine
SACO |B |Dy.Dx TOROY g | - - - | - | Dug- Dy - X = Dy Subtract BCO source and eXtend bit fram
-{hy)-(Ax) - - e | - - - | - - | - [0 g -(Ay) g X =-1Ax) g | destination, BCD result
gecc |B |d 0 |- d|-{d]d | d]|d d d | d - - |lfee is true then I's = d [feotrue thendB= 11121111
else 0's > d elsedB= 00000000
STOP #n - - - | s |#n->SRST0P Move #n to SR, stop processor (Privileged)
SUB* |BWL |s.0n kR e ls s | s | s | s 5 s | s | s s |s'[0n-s>Dn Subtract binary (SUBI or SUBQ used when
On.d gfd{d]| d | d]|d d d [d| - - -|d-Dn=>4d source is #n. Prevent SUBQ with #n.l)
SUBA® | WL{shn [——— slels| s | s |s 5 s | s | s § |s|h-s>hn Subtract address (W sign-extended to 1)
SUBI* [BWL | #nd ekl gl d | d [d | d d d | d | - - s |d-#n=>d subtract immediate from destination
SUBO" [BWL [#nd wrrkk g ldfd | d [d | d d d | d - s |d-#n>d Subtract quick immediate (#n range: | to 8)
SUBX | BWL | Dy.Dx il I3 I B I - |- - - - - | - |Dx-Dy-X = Dx Subtract source and eXtend bit from
-(Ay) - (A - e - - | -0h) - -(Ay) - K = -(hs) destination
SWAP | W |Dn =**00(d| - - - - - - - - | hits[3116) € >hits[I50] |Exchange the 16-bit halves of On
s |8 |d 004 - d|d | d | d d d | d - | - |testd>CCR: | >hitTofd Nandset to reflect d, bit? of d set to |
TRAP | - - - - - - | s |PC=>-(S8P):8R=>-(35P); |Push PC and SR, PC set by vector table #n
(vector table entry) <> PC | (#n range: [to 15}
ey | == - - -] - - - - - | - |V then TRAP #7 If averflow, execute an Overflow TRAP
IS8T [BWL|d 00| d|-fd | d [d]| d d d | d - - |testd = GLR N and I set ta reflect destination
LINLK b | -d - - - - - -l - - - - | An = SP; (SP)+ 2 An Remove local workspace from stack
BWL sd KNMEVC | On [An | (An) | (An)+ | -(An) | (i An) | (iAnRn) | sbsW |&bs.L| (i.PC) | (iPCRR) | #n
Condition Tests (+ OR. !NOT, @ XOR: ® Unsigned, ® Alternate cc) An Address register (I6./32-bit, n=0-7) ~ 88P Supervisor Stack Pointer (32-hit)
ce Condition Test | cc | Condition Test Dn Data register (8/16/82-hit, n=0-7) USP User Stack Pointer (32-bit)
T true [VC | overflow clear |1V Rn any data or address register 8P Active Stack Pointer (same as AT)
F false 0 VS | overflow set V s Source, d [estination PC Program Counter (24-hit)
HE higher than C+D |PL| plus M g Fither source or destination SR Status Register (16-bit)
L lowerorsame |C+2 | Ml | minus N #n Immediate data, i Displacement | CCR Condition Code Register (lower B-bits of SR)
HS", CE* | higher or same | IC GE | greater orequal | IN@ V) BCD Hinar'f Caded Decimal N negative. Z zero. V overflow. G carry. X extend
Li" £5% | lower than T T [less than e IT Etfective address * set according to operation's result, = set directly
WE not equal 17 BT [greater than | [Ne@ W)+ 1] | Long only: all others are byte only - not affected, O cleared, 1set, U undefined
0l ooyl 7 T 7 ess or equal eIy, . hssembler calculates offset
. Branch sizes: B or .8 -I28 to +[27 bytes, .W or L -32768 to +32767 bytes

Assembler automatically uses A, |, (L or M form if possible. Use #n.| to prevent Quick optimization

| Distributed under the GNLl general public use license.

Key to Final Exam S4 — Appendices

6/8

Computer Architecture — EPITA—S4 —2018/2019

Lastname:ccevvuvieeiiiiiieiiniieeees First name:ccccceeevvevieeieenieeeieeens Group: veeevveeerveeeeeen,

ANSWER SHEET TO BE HANDED IN

Exercise 1
Instruction Memory Register
Exampl 5005000 54 AF |00 40] E7 21 48 o | o0 200005004
xample

. A1 = $0000500C
Example $005008 (9 10 11 C8 D4 36 @ 88 No change
MOVE.L #321,2(A1) $005008 C9 10 00 00 01 41 1F 88 No change
MOVE.W #$5012,6(A1,D0.W) $005000 18 B9 E7 21 48 CO No change
MOVE.W -(A2),-2(A2) $005008 C9 10 11 C8 [1F 88| 1F 88 A1 =$0000500E
MOVE.B 3(A2),-120(A2,D1.L) $005008 10 11 C8 D4 36 1F 88 No change
Exercise 2

Si Missing Numb
Operation 1.ze 1S5S }1m er N Z \% C
(bits) (hexadecimal)
$50 + $? 8 $80 1 0 0 0
$50 + $? 16 $8000 1 0 0 0
$50 + $? 32 $80000000 1 0 0 0
Exercise 3
Values of registers after the execution of the program.
Use the 32-bit hexadecimal representation.
D1 =$00000002 D3 = $00008888
D2 = $00000009 D4 =$00000020

Key to Final Exam S4 — Answer Sheet 7/8

Computer Architecture — EPITA—S4 —2018/2019

Exercise 4

Decrement sub.b ,
bhs \quit
clr.b

\quit rts

Darker jsr Decrement
ror.l #8,
jsr Decrement
ror.l #8,
jsr Decrement
swap
rts

FadeOut movem.l d0/d1,-(a7)
move.l (a0),
move.b #1,

\loop jsr Darker
move.l ,(a0)
bne \loop
movem.l (a7)+,d0/
rts

Key to Final Exam S4 — Answer Sheet

8/8

	Exercise 1 (4 points)
	Exercise 2 (3 points)
	Exercise 3 (4 points)
	Exercise 4 (9 points)

