Algorithmics
Correction Final Exam #4 (P4)

UNDERGRADUATE 2" YEAR S4 — EPITA

14 May 2019
Solution 1 (Restyled Floyd — 3 points)

1. The modification is simple. A negative cycle will return a negative cost over the calculated distance
from a vertex z to this same vertex = (cycle and negative). It is therefore sufficient to test, when
the vertex = = y, if the computed distance value is negative. If this is the case, the procedure is
disconnected.

2. Again the use is not very complicated. We use the matrix that returns the smaller distances for each
pair of vertices (z,y) of the graph. For each vertex z from 1 to n, we compute its eccentricity value
by keeping its greatest distance value with the other vertices (the max of its smaller distances).
There’s nothing for it but to compare the n eccentricities (one for each vertex) and determine the
smallest. The vertex to which it belongs is the center of the graph.

Solution 2 (MST or not? — 2 points)
NO, the spanning subgraph T is not a MST of G!

The stated principle is similar that of Kruskal, but the difference is that the construction is upside
down. The graph is split in half each time without worrying about the lowest cost edges.

Let’s take the example of the following figure. If the subset S; = {0,2} and the subset Sy = {1, 3},we
then have the MSTs 71 =< S1, A1 = {{0,2}} > and T2 =< 52, A, = {{1,3}} >. if we choose the lowest
cost edge {0,1} to connect these two MSTs, we do not get a MST of G since we would have to choose
the edge {2, 3} instead of the edge {1, 3}.

Actually, the problem is essentially due to arbitrary splitting of S in two subset of vertices. Also in
this example, if the split of S had given S; = {0,1} and S; = {2, 3}, there were no problems, the choice
of the lowest cost edge (ie {0,2} guaranteed us to obtain a MST T of G.

Algorithmics UNDERGRADUATE 2" YEAR S4
CORRECTION FINAL ExaM #4 (P4) - EpriTA

Solution 3 (Eat Crepes — 11 points)

1. Graph that represents the recipe:

Figure 1: Banana crepe "flambée"

2. The cook is alone:

(a) Specifications:
The function topologicalSort (G) returns a topological sort for the acyclic digraph G,
where all the vertices are reachable from the vertex 0.

1 def topologicalSort(G):
compute half—degrees
dIn = [0] * G.order
4 for s in range (G.order):
for adj in G.adjlists[s]:
dIn[adj] += 1

8 # 0 1s the only verter without predecessors
sort = [0]

10 first = 0

11 while len(sort) < G.order:

12 s = sort[first]

13 dIn[s] = —1

14 for adj in G.adjlists[s]:

15 dIn[adj]l -= 1

16 if dInf[adj] ==

17 sort.append (adj)

18 first += 1

19 return sort

3. The cook has found assistants, some tasks can thus be done simultaneously.

(a) The longest paths from the first task (start) give the early start dates for each task.

Early start dates for each task of the crepe recipe:

start A B C D E F G H I J end
[0 J0[3[33]0]0]300]330]450 | 633] 643 [653 |

(b) Minimal duration before we eat our crepe: 653 secondes (10mn53s).

(c) To compute the late start dates, we must consider the reverse graph and search for the
longest paths from the task end: the late start date of a task is the difference between the
minimum duration of the project and the length of the path obtained.

Algorithmics UNDERGRADUATE 2" YEAR S4
CORRECTION FINAL ExaM #4 (P4) - EpriTA

(d) Specifications:
The function duration(G) computes the minimum duration to complete the project rep-
resented by the digraph G.

i def duration (G):
. mnnn

return dist: the longest paths in G
mimnin
L = topologicalSort (G)
dist = [0] #* G.order
7 for i in range(G.order-1):
8 X = L[i]
) for y in G.adjlists[x]:
10 if dist[x] + G.costs[(x, y)]1 > dist[y]l:
11 dist[y]l = distl[x] + G.costs[(x, y)]
12 return dist[L[-1]]1 # the last wvertex is the end of the project

Solution 4 (Prim, Quite Simply — 5 points)

def Prim(G):
nnn
G i1s comnnected
return a MST of G

mnn

T = graph.Graph(G.order, directed = False, costs = True)
costs = [inf] #* G.order
p = [-1]1 * G.order
M = [False] #* G.order
H = heap.Heap(G.order)
costs [0] = O
x =0
for _ in range(G.order-1): # graph is connected
for y in G.adjlists[x]:
if not M[y] and G.costs[(x, y)] < costsl[y]l:
costs [yl = G.costs[(x, y)]
plyl = x
H.update(y, costsl[y])
(_, x) = H.popQO
M[x] = True
T.addedge(x, plx], costs[x])
return T

