
Algorithmics

Final Exam #4 (P4)

Undergraduate 2nd year S4

Epita

15 May 2018 - 10 : 00

Instructions (read it) :

✷ You must answer on the answer sheets provided.

– No other sheet will be picked up. Keep your rough drafts.

– Answer within the provided space. Answers outside will not be marked: Use your drafts!

– Do not separate the sheets unless they can be re-stapled before handing in.

– Penciled answers will not be marked.

✷ The presentation is negatively marked, which means that you are marked out of 20 points and the
presentation points (maximum of 2) are taken off this grade.

✷ Code:

– All code must be written in the language Python (no C, Caml, Algo or anything else).

– Any Python code not indented will not be marked.

– All that you need (class, types, routines) is indicated in the appendix (last page)!

– You can write your own functions as long as they are documented (we have to known what
they do).

In any case, the last written function should be the one which answers the question.

✷ Duration : 2h

1



Algorithmics
Final Exam #4 (P4) – 15 May 2018 - 10 : 00

Undergraduate 2nd year S4
Epita

Exercise 1 (Exhausting deposit. . . – 5 points)

Miners want to secure the traffic between the different extraction points (represented by vertices)
connected by galeries. All extraction points are accessible from the outside. The network is sufficiently
complex to allow several paths from one extraction point to another. It is therefore not necessary for each
gallery to be secured as long as there is always at least one safe route between two extraction points.

Figure 1: Graph of the gallery network

1. We want to determine the smallest number of galleries to secure:

(a) to which graph model corresponds the solution?

(b) In the case on figure 1, how many galleries must be secured?

(c) Suggest a graphic solution.

(d) By generalizing to a N extraction point network, how many galleries should be secured?

2. We detail the problem analysis:

For each gallery, the cost of securing work has been calculated (see figure 2).

Figure 2: Weighed graph: securing the gallery network

(a) Suggest a graphic solution that minimises the costs of securing work.

(b) Does this solution be unique?

Why?

2



Algorithmics
Final Exam #4 (P4) – 15 May 2018 - 10 : 00

Undergraduate 2nd year S4
Epita

Exercise 2 (Asterix and the Soothsayer – 13 points)

The aim is to find the best path between a source and a destination in a simple digraph weighted
with positive costs treating a minimum of uninteresting vertices. To do this, we need the help of the
diviner Heuristix. The diviner Heuristix is able to tell us if a vertex is near the destination or not. Like
any diviner, his response is not accurate.

If we give Heuristix a graph, a vertex s and a destination in the graph, it returns a positive real
estimating the distance to travel from the vertex to the destination (the smaller the value, the closer
the vertex is to destination). The estimation does not take into account the distance from the source

to reach the vertex s.

1. The algorithm:

We want to build an algorithm using the informations of the diviner, estimations given by the
function heuristix (see appendices). The algorithm to write must give the best path between a
source and a destination. The difference with the classical algorithms of shortest paths is that
we use the diviner’s guess for the choice of vertices to be processed: at each iteration we choose the
vertex whose sum of the computed distance from the source with the guessing of the diviner is
the smaller. It is also necessary to avoid the circuits, so we will not treat again the vertices
already treated: in the diviner’s language, these vertices are said "closed", those not yet treated
are "open" .

(a) What is the name of this algorithm?

(b) Use of additional data structures: The class to use for the graph is given in appendix
(implementation by adjacency lists). You can also use all types / classes (and associated
functions and methods) given in the appendix. Optimization is of course required.

How to represent the "open" vertices?
How to represent the "closed" vertices?

(c) What about the complexity? Assuming the cost of the function heuristix is constant,
give an order of growth of the algorithm complexity (in the worst case: all vertices are used)
with the choices made in the previous question (with n the vertex number, p the edge number).

(d) Implement the algorithm: it is a function that takes the graph (with positive costs), the
two vertices source and destination as parameters ; it gives as result the path from the
source to the destination obtained as a list of vertices (from the source to the destination).

At first, it will be assumed that the path always exists.
Bonus if the function raises an exception when the path does not exist!

3



Algorithmics
Final Exam #4 (P4) – 15 May 2018 - 10 : 00

Undergraduate 2nd year S4
Epita

2. Deviners:

Figure 3: Digraph for the diviners

The shortest path from 1 to 10?

When we call the diviner Heuristix, three people present themselves:

⋆ Heuristix the Dutchman (called HeuristixD): very (too?) optimistic, he thinks that all the
vertices are close to the destination.

In this case, he systematically returns 0.

⋆ Heuristix of the New World (called HeuristixM ): Germain (it is an Angle) having traveled
a lot (hence his nickname) he gives us an estimation corresponding to the minimum number
of edges to reach the destination, he likes square things.

In this case, he thus gives us:

s 1 2 3 4 5 6 7 8 9 10
HeuristixM (s) 3 2 3 1 1 5 4 3 2 0

⋆ Heuristix the Byzantine (called HeuristixB): Like all Byzantine generals, HeuristixB often
answers anything.

In this case, he gives us the sum of incoming edges:

s 1 2 3 4 5 6 7 8 9 10
HeuristixB (s) 0 9 1 1 3 2 2 1 1 2

(a) Apply the algorithm on the graph in figure 3 with the heuristiques HeuristixD and HeuristixM
to find the best path between vertices 1 and 10: fill the vectors dist (the distances from the
source, without the heuristic . . . ) and parent and list the processed vertices (in order). As
usual, if several choices are possible we will choose the vertex of lower number.

(b) To which algorithm does the solution with HeuristixD ’s estimation correspond (warning,
spelling counts . . . )?

(c) Bonus What to think of HeuristixB ’s estimation? Is it better than HeuristixM ’s?

4



Algorithmics
Final Exam #4 (P4) – 15 May 2018 - 10 : 00

Undergraduate 2nd year S4
Epita

Exercise 3 (What is this? – 4 points)

1 def __dfs(G, s, x, y, M):

2 M[s] = True

3 for adj in G.adjlists[s]:

4 if adj == y:

5 if s != x:

6 return True

7 elif not M[adj]:

8 if __dfs(G, adj , x, y, M):

9 return True

10 return False

11

12 def dfs(G, x, y):

13 M = [False] * G.order

14 return __dfs(G, x, x, y, M)

1 def what(G):

2 n = G.order

3 L = []

4 for x in range(n):

5 for y in G.adjlists[x]:

6 if x < y:

7 L.append ((G.costs [(x,y)], x, y))

8 L.sort() # so r t s L in i n c r e a s i n g order

9 while L != []:

10 (_, x, y) = L.pop()

11 if dfs(G, x, y):

12 G.removeedge(x, y)

Figure 4: Graph for what

1. What does the function dfs(G) test?

2. The function what

(a) Give the result of the application of the function what to the graph in figure 4 (draw the
graph).

(b) What property has the graph after application of the function?

(c) How this function can be optimised?

5



Algorithmics
Final Exam #4 (P4) – 15 May 2018 - 10 : 00

Undergraduate 2nd year S4
Epita

Appendix

Classes Graph and Heap are supposed imported. Graphs we manage cannot be empty.

Graphs

1 class Graph:

2 def __init__(self , order , directed = False , costs = False):

3 self.order = order

4 self.directed = directed

5 self.adjLists = []

6 for i in range(order):

7 self.adjLists.append ([])

8 if costs:

9 self.costs = {}

10 else:

11 self.costs = None

12

13 def addedge(self , src , dst):

14 self.adjlists[src]. append(dst)

15 if not self.directed and dst != src:

16 self.adjlists[dst]. append(src)

17 if cost:

18 self.costs [(src , dst)] = cost

19 if not self.directed:

20 self.costs [(dst , src)] = cost

21

22 def removeedge(self , src , dst):

23 if dst in self.adjlists[src]:

24 self.adjlists[src]. remove(dst)

25 if self.costs:

26 self.costs.pop((src , dst))

27 if not self.directed and dst != src:

28 self.adjlists[dst]. remove(src)

29 if self.costs:

30 self.costs.pop((dst , src))

Heap

• Heap(n)

returns a new heap with size n

• H.push(s, val)

add s of value val in H

• H.update(s, newval)

if s not in H same as H.push(s, newV al)

else updates the heap after minimization of s’s value with newV al

• (val, s) = H.pop()

returns and deletes the element (s) of smallest value (val) in heap

• H.isempty()

tests whether H is empty

List

• len(L)

• L.append(x)

• L.pop() L.pop(i)

• L.insert(i, x)

Others

• range.

The diviner

The function heuristix(G, s, dst) gives an estimation of the distance between s and dst in G.

Your functions

You can write your own functions as long as they are documented (we have to know what they do).
In any case, the last written function should be the one which answers the question.

6


