Last name	
First name	
Group	

Algorithmics

Undergraduate $2^{\text {nd }}$ year S 4
Final Exam \#4 (P4)
15 May 2018-10:00
Answer Sheets

1	
2	
3	
4	

Answers 1 (Exhausting deposit...- 5 points)

1. Secure a minimum number of galleries:
(a) The solution is:
(b) In the case on figure 1, how many galleries must be secured?
(c) Suggest a graphic solution (Highlight the galleries you propose to secure).

(d) For a N extraction point network, we have to secure \square galleries
2. We detail the problem analysis: for each gallery, the cost of securing work has been added
(a) How in this case secure access to all caves at the lowest cost?
\qquad
\qquad
\qquad
(b) Suggest a graphic solution (Highlight the galleries you propose to secure).

(c) Does this solution be unique? YES - NO
(d) Justification: \qquad
\qquad
\qquad

Answers 2 (Asterix and the Soothsayer - 13 points)

1. The algorithm:

(a) What is the name of this algorithm? \qquad
(b) How to represent the "open" vertices?
\qquad
How to represent the "closed" vertices?
\qquad
(c) Algorithm complexity:
(d) The function Asterix (G, src, dst):

2. Deviners:
(a) Do not put values for the unreached vertices!
\star Heuristix the Dutchman (HeuristixD)
Processed vertices (in order): \qquad

	1	2	3	4	5	6	7	8	9	10
dist										
parent										

\star Heuristix of the New World (HeuristixM)

Processed vertices (in order): \qquad

	1	2	3	4	5	6	7	8	9	10
dist										
parent										

(b) Solution with HeuristixD is: \qquad
(c) What to think of HeuristixB's estimation? Is it better than HeuristixM's?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answers 3 (What is this? - 4 points)

1. What does the function dfs (G) test?
\qquad
\qquad
\qquad
2. The function what
(a) The graph):

(b) What property has the graph after application of the function?
(c) How this function can be optimised?
\qquad
\qquad
\qquad
\qquad
\qquad
