
Algorithmics

Final Exam #4 (P4)

Undergraduate 2nd year (S4) - api

Epita

16 May 2017 - 10h

Instructions (read it) :

✷ You must answer on the answer sheets provided.

– No other sheet will be picked up. Keep your rough drafts.

– Answer within the provided space. Answers outside will not be marked: Use your drafts!

– Do not separate the sheets unless they can be re-stapled before handing in.

– Penciled answers will not be marked.

✷ The presentation is negatively marked, which means that you are marked out of 20 points and the
presentation points (maximum of 2) are taken off this grade.

✷ Code:

– All code must be written in the language Python (no C, Caml, Algo or anything else).

– Any Python code not indented will not be marked.

– All that you need (class, types, routines) is indicated in the appendix (last page). Read it!

– You can write your own functions as long as they are documented (we have to know what they
do).

In any case, the last written function should be the one which answers the question.

✷ Duration : 2h

1

Algorithmics
Final Exam #4 (P4) – 16 May 2017 - 10h

Undergraduate 2nd year (S4) - api

Epita

Exercise 1 (MST and SP ... – 3 points)

The graph of figure 1 represents the possibilities of power supply of 6 cities by a "power plant" as
well as the operating cost of these different connections.

 1

 -1

 3

 2

 2

 1

 2

 1

 1 1 2

 1

 2

power plant

C2

C3

C4

C1

C6

C5

Figure 1: Undirected weighted graph.

1. On which kind of directed graphs can the Bellman algorithm be executed?

2. Which algorithm determines the mst of an undirected graph using a principle close to that of
Dijkstra?

3. Draw an mst of the graph of figure 1.

4. Considering that vertices are managed in increasing order and using the principle of the Dijkstra
algorithm, draw the tree of the shortest paths from the "power plant" vertex of the graph of figure 1.

Exercise 2 (Condensation – 4 points)

Let G be a digraph with k strongly connected components: C0, C1, . . . , Ck−1. The condensation of
G is the digraph GR = < SR, AR > defined by:

• SR = {C0, C1, · · · , Ck−1}
• Ci → Cj ∈ AR ⇔ There exists at least an edge in G with its head in the strongly connected

component Ci and its tail in the strongly connected component Cj .

Figure 2: Digraph G1

The aim here is to build the condensation of a graph G. We have the list of the strongly connected
components of G (each component is a list of the vertices it contains).

For instance, the following list is the component list of the graph in figure 2:

1 scc = [[2, 3, 4, 6, 7, 8], [9], [5], [0, 1]]

Write the function condensation(G, scc) that builds the condensation GR of a digraph G, with scc

its component list. The function returns Gr and the vector of components: a vector that give for each
vertex, the number of its component (the vertex in GR).

For instance, with G1 the graph in figure 2:

1 >>> (Gr, comp) = condensation(G1 , scc)

2 >>> comp

3 [4, 4, 1, 1, 1, 3, 1, 1, 1, 2]

2

Algorithmics
Final Exam #4 (P4) – 16 May 2017 - 10h

Undergraduate 2nd year (S4) - api

Epita

Exercise 3 (Digraphs and Mystery – 3 points)

Figure 3: Digraph G2 Figure 4: Digraph G3

1 def __test(G, x, p, c):

2 c += 1

3 p[x] = c

4 rx = p[x]

5 for y in G.adjLists[x]:

6 if p[y] == 0:

7 (ry , c) = __test(G, y, p, c)

8 if ry == -1:

9 return (-1, c)

10 rx = min(rx , ry)

11 else:

12 rx = min(rx , p[y])

13

14 if rx == p[x]:

15 if p[x] != 1:

16 return (-1, c)

17

18 return (rx , c)

19

20 def test(G):

21 p = [0] * G.order

22 c = 0

23 (_, c) = __test(G, 0, p, c)

24 return (c == G.order)

We assume that the adjacency lists are sorted in increasing order in the graph in parameter.

1. Let G2 and G3 be the digraphs in figures 3 and 4. For each of the following calls:

• how many calls of __test have been done?

• what is the result returned by test?

(a) test(G2)

(b) test(G3)

2. Let G be a digraph. What is the information returned by test(G)?

3

Algorithmics
Final Exam #4 (P4) – 16 May 2017 - 10h

Undergraduate 2nd year (S4) - api

Epita

Exercise 4 (T-spanner – 10 points)

Let S be a set of n points in R
2 et t ≥ 1 a real number. A t-spanner is a graph G where vertices are

the points in S such that for each pair of points p and q of S, there exists a path in G between p and q

whose length is smaller or equal to t× |pq| (|pq| is the spacial distance between p and q).

The stretch factor of G is defined as the smallest real t such that G is a t-spanner of S.

Construction

The graph G is built by progressively adding edges. At first, the graph only contains the vertices. We
work with all the possible pairs of points. Those are taken with spacial distances in increasing order. For
each pair of points (p, q), if there is not already a shortest path in G between p and q whose
distance less or equal to t× |pq| then we add an edge {p, q} of weight |pq| to G.

Thus, the algorithm to build a t-spanner from a set S is the following:

L ← point pair list sorted by increasing spacial distance

S ← set of the n points

G ← <S,∅>

for each (p, q) ∈ L do
δ ← length of the shortest path between p and q in G

w = spacial distance between p and q

if δ > t * w then
add edge {p, q} with weight w in G

end if
end for

An example

Let S a set of 9 points (see figure 5), whose coordinates are given in the following list:

1 [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

Spacial distances for each pair of points of S:
(p, q) |pq|

(0, 1) (0, 3) (1, 2) (1, 4) (2, 5) (3, 4) (3, 6) (4, 5) (4, 7) (5, 8) (6, 7) (7, 8) 1
(0, 2) (0, 6) (1, 7) (2, 8) (3, 5) (6, 8) 2

(0, 4) (1, 3) (1, 5) (2, 4) (3, 7) (4, 6) (4, 8) (5, 7)
√
2 = 1, 4142...

(0,8) (2,6) 2
√
2 = 2, 8284...

(0, 5) (0, 7) (1, 6) (1, 8) (2, 3) (2, 7) (3, 8) (5, 6)
√
5 = 2, 2360...

The graphs in figure 6 and 7 are t-spanner of S, with stretch factors respectively 1,5 and 3.

Figure 5: Points

Figure 6: Stretch factor = 1,5 Figure 7: Stretch factor = 3

4

Algorithmics
Final Exam #4 (P4) – 16 May 2017 - 10h

Undergraduate 2nd year (S4) - api

Epita

To build the t-spanner, the spacial distances have already been calculated. An unordered list of
triplets (p, q, |pq|) is given.

Here is the beginning of the list for our example:

1 L = [(0, 1, 1.0),

2 (0, 2, 2.0),

3 (0, 3, 1.0),

4 (0, 4, 1.4142135623730951) ,

5 (0, 5, 2.23606797749979) ,

6 (0, 6, 2.0),

7 (0, 7, 2.23606797749979) ,

8 (0, 8, 2.8284271247461903) ,

9 (1, 2, 1.0),

10 ...]

1. Give the t-spanners of points in figure 5:

(a) for a stretch factor of 2

(b) for a stretch factor of 5

2. Functions:

(a) Write the function Dijkstra(G, src, dst) that returns the length of the shortest path be-
tween src and dst in G, +∞ if there is no path.

(b) Write the function pathGreedy(n, L, t) that returns a t-spanner (with stretch factor = t) for
the set of n points (number form 0 to n−1) with L the list of triplets (p, q, |pq|) (as described
above).

bonus When the stretch factor is n− 1 with n the number of points, what is the t-spanner?

5

Algorithmics
Final Exam #4 (P4) – 16 May 2017 - 10h

Undergraduate 2nd year (S4) - api

Epita

Appendix

Graphs

The graphs we work on are not empty and do not contain multiples edges.

1 # new graph
2 G = Graph(order , False)

3 # new edge (x , y)
4 G.addEdge(x, y)

5

6 # new we i gh t ed d i g raph
7 G = Graph(order , True , costs = True)

8 # new edge (x , y) w i th c o s t w
9 G.addEdge(x, y, w)

Heaps

Python’s heaps

1 from heapq import *

2 help(heapq)

3 Usage:

4 heap = [] # cr e a t e s an empty heap
5 heappush(heap , item) # pushes a new item on the heap
6 item = heappop(heap) # pops the sma l l e s t i tem from the heap

AlgoPy’s Heaps

Our heaps can only work with pairs (x, val) with x ∈ [0, n[and val the order value.

1 from AlgoPy/heap import *

2

3 Usage:

4 H = Heap(size) # cr e a t e s an empty heap
5 update(H, x, val) # i f x not in H, pushes i t w i th v a l on the heap ,
6 # e l s e upda te s i t s p o s i t i o n accord ing to v a l
7 (x, val) = pop(H) # pops the sma l l e s t i tem from the heap
8 isEmpty(H) # t e s t s i f H i s empty !

Functions you can use

• Any function or method on lists

• range

• max, min, abs

Your functions

You can write your own functions as long as they are documented (we have to know what they do).
In any case, the last written function should be the one which answers the question.

6

