Algorithmics
Correction Final Exam #4 (P4)

UNDERGRADUATE 2" YEAR (S4) - API — EpITA

16 May 2017 - 10h

Solution 1 (MST et SP ... — 3 points)

1. The Bellman algorithm is usable in cases where the costs of the arcs are of any kind, but where the
graph does not have a circuit.

2. The algorithm determining the mst of an undirected graph whose principle is close to that of
Dijkstra is PRIM.

3. The MST of the graph is that of figure 1.

Figure 1: MST of the graph.

4. The shortest path tree from "power plant" vertex of the graph is that of figure 2.
@ l /§I]>
1 3 2 1

e @
1
2

2

C4 C5

Figure 2: Shortest path tree from "power plant" vertex of the graph.

N

Algorithmics UNDERGRADUATE 2" YEAR (S4) - API
CORRECTION FINAL ExaMm #4 (P4) - EpITA

Solution 2 (Condensation)

Specifications:
The function condensation((G, scc) builds the condensation Gy of a digraph G, with scc its
component list. The function returns G, and the vector of components: a vector that give for each
vertex, the number of its component (the vertex in Gg).

def condense (G, scc):

comp = [-1] * G.order
k = len(scc)
for i in range (k):
L = scclil] for s in sccl[il:
for j in range(len(L)): comp[s] = i
comp[L[j]] = i

Gr = graph.Graph(k, directed = True)
for s in range(G.order):
for adj in G.adjLists([s]:
(x, y) = (compls], compladjl)
if x != y: # (and y not in Gr.adjLists[z])
Gr .addEdge (x, y) # Gr.adjLists [z]. append(y)

return (Gr, comp)

Solution 3 (Graphes and Mystery — 3 points)

Call number | Returned result
(a) test(Ga) 5 False
(b) test(G3) 7 True

2. What is the information returned by test (G)?

test (@) tests if G is strongly connected.

Algorithmics UNDERGRADUATE 2" YEAR (S4) - API
CORRECTION FINAL ExaMm #4 (P4) - EpITA

Solution 4 (T-spanner — 10 points)

1.
(a) t-spanners for a stretch factor of 2 (b) t-spanners for a stretch factor of 5

&—® OD—06—0
0.9. L@@
.. O—06—©

2. (a) Specifications:
The function Dijkstra(G, src, dst) returns the length of the shortest path between
src and dst in G, +oo if there is no path.

1 def Dijkstra(G, src, dst): # 4.5 pts

3 dist = [inf] * G.order
] dist[src] = 0

H = Heap(G.order)
6 update (H, src, 0)

8 while not H.isEmpty () :
9 (_, cur) = pop(H)
10 if cur == dst:

11 return dist[dst]

12 for s in G.adjLists[cur]:

13 if dist[s] > dist[cur] + G.costs[(cur, s)]:
14 dist[s] = dist[cur] + G.costs[(cur, s)]
15 update(H, s, distl[s])

17 return dist[dst] #inf

(b) Specifications:
The function pathGreedy(n, L, t) returns a t-spanner (with stretch factor = t) for the set
of n points (number form 0 to n — 1) with L the list of triplets (p, q, |pq|)-

1 def pathGreedy(order, edges, stretch): # 4.5 pts

edgeHeap = []
' for (x, y, w) in edges:
5 heappush (edgeHeap, (w, x, y))

7 G = graph.Graph(order, False, costs = True)
8 while edgeHeap != []:

9 (w, x, y) = heapq.heappop(edgeHeap)

10 if Dijkstra(G, x, y) > stretch * w:

11 G.addEdge (x, y, w)

13 return G

bonus When the stretch factor is n — 1 with n the number of points, what is the t-spanner?

The t-spanner is an MST.

