
Algorithmics

Correction Final Exam #4 (P4)

Undergraduate 2nd year (S4) - API – Epita

16 May 2017 - 10h

Solution 1 (MST et SP ... – 3 points)

1. The Bellman algorithm is usable in cases where the costs of the arcs are of any kind, but where the
graph does not have a circuit.

2. The algorithm determining the mst of an undirected graph whose principle is close to that of
Dijkstra is PRIM.

3. The MST of the graph is that of figure 1.

 1

 -1

 3

 2

 2

 1

 2

 1

 1 1 2

 1

 2

power plant

C2

C3

C4

C1

C6

C5

Figure 1: MST of the graph.

4. The shortest path tree from "power plant" vertex of the graph is that of figure 2.

 1

 -1

 3

 2

 2

 1

 2

 1

 1 1 2

 1

 2

power plant

C2

C3

C4

C1

C6

C5

Figure 2: Shortest path tree from "power plant" vertex of the graph.

1

Algorithmics
Correction Final Exam #4 (P4) –

Undergraduate 2nd year (S4) - API
Epita

Solution 2 (Condensation)

Specifications:
The function condensation(G, scc) builds the condensation GR of a digraph G, with scc its
component list. The function returns Gr and the vector of components: a vector that give for each
vertex, the number of its component (the vertex in GR).

1 def condense(G, scc):

2

3 comp = [-1] * G.order

4 k = len(scc)

5 for i in range(k):

6 L = scc[i] for s in scc[i]:

7 for j in range(len(L)): comp[s] = i

8 comp[L[j]] = i

9

10 Gr = graph.Graph(k, directed = True)

11 for s in range(G.order):

12 for adj in G.adjLists[s]:

13 (x, y) = (comp[s], comp[adj])

14 if x != y: # (and y not in Gr . a d j L i s t s [x])
15 Gr.addEdge(x, y) # Gr . a d j L i s t s [x] . append (y)
16

17 return (Gr , comp)

Solution 3 (Graphes and Mystery – 3 points)

1.

Call number Returned result

(a) test(G2) 5 False

(b) test(G3) 7 True

2. What is the information returned by test(G)?

test(G) tests if G is strongly connected.

2

Algorithmics
Correction Final Exam #4 (P4) –

Undergraduate 2nd year (S4) - API
Epita

Solution 4 (T-spanner – 10 points)

1.
(a) t-spanners for a stretch factor of 2 (b) t-spanners for a stretch factor of 5

2. (a) Specifications:
The function Dijkstra(G, src, dst) returns the length of the shortest path between
src and dst in G, +∞ if there is no path.

1 def Dijkstra(G, src , dst): # 4.5 p t s
2

3 dist = [inf] * G.order

4 dist[src] = 0

5 H = Heap(G.order)

6 update(H, src , 0)

7

8 while not H.isEmpty ():

9 (_, cur) = pop(H)

10 if cur == dst:

11 return dist[dst]

12 for s in G.adjLists[cur]:

13 if dist[s] > dist[cur] + G.costs [(cur , s)]:

14 dist[s] = dist[cur] + G.costs[(cur , s)]

15 update(H, s, dist[s])

16

17 return dist[dst] #in f

(b) Specifications:
The function pathGreedy(n, L, t) returns a t-spanner (with stretch factor = t) for the set
of n points (number form 0 to n− 1) with L the list of triplets (p, q, |pq|).

1 def pathGreedy(order , edges , stretch): # 4.5 p t s
2

3 edgeHeap = []

4 for (x, y, w) in edges:

5 heappush(edgeHeap , (w, x, y))

6

7 G = graph.Graph(order , False , costs = True)

8 while edgeHeap != []:

9 (w, x, y) = heapq.heappop(edgeHeap)

10 if Dijkstra(G, x, y) > stretch * w:

11 G.addEdge(x, y, w)

12

13 return G

bonus When the stretch factor is n− 1 with n the number of points, what is the t-spanner?

The t-spanner is an MST.

3

