Algorithmics
 Correction Final Exam \#4 (P4)

Undergraduate $2^{\text {nd }}$ year (S4) - API - Epita
16 May 2017-10h

Solution 1 (MST et SP ... - 3 points)

1. The Bellman algorithm is usable in cases where the costs of the arcs are of any kind, but where the graph does not have a circuit.
2. The algorithm determining the mst of an undirected graph whose principle is close to that of Dijkstra is PRIM.
3. The MST of the graph is that of figure 1 .

Figure 1: MST of the graph.
4. The shortest path tree from "power plant" vertex of the graph is that of figure 2.

Figure 2: Shortest path tree from "power plant" vertex of the graph.

Solution 2 (Condensation)

Specifications:

The function condensation $(G, s c c)$ builds the condensation G_{R} of a digraph G, with scc its component list. The function returns G_{r} and the vector of components: a vector that give for each vertex, the number of its component (the vertex in G_{R}).

```
def condense(G, scc):
    comp = [-1] * G.order
    k = len(scc)
    for i in range(k):
            L = scc[i] for s in scc[i]:
            for j in range(len(L)): comp[s] = i
                comp[L[j]] = i
    Gr = graph.Graph(k, directed = True)
    for s in range(G.order):
        for adj in G.adjLists[s]:
            (x, y) = (comp[s], comp[adj])
            if x != y: # (and y not in Gr.adjLists[x])
                Gr.addEdge(x, y) # Gr.adjLists[x].append(y)
    return (Gr, comp)
```

Solution 3 (Graphes and Mystery - 3 points)
1.

	Call number	Returned result
(a) test $\left(G_{2}\right)$	5	False
(b) test $\left(G_{3}\right)$	7	True

2. What is the information returned by test (G)?
test (G) tests if G is strongly connected.

Solution 4 (T-spanner - 10 points)
1.
(a) t-spanners for a stretch factor of 2
(b) t-spanners for a stretch factor of 5

2. (a) Specifications:

The function Dijkstra(G, src, dst) returns the length of the shortest path between src and dst in $G,+\infty$ if there is no path.

```
Mdef Dijkstra(G, src, dst): # 4.5 pts 
```

(b) Specifications:

The function pathGreedy (n, L, t) returns a t-spanner (with stretch factor $=t$) for the set of n points (number form 0 to $n-1$) with L the list of triplets (p, q, $|p q|)$.

```
|\mp@code{def pathGreedy(order, edges, stretch): # 4.5 pts}
```

bonus When the stretch factor is $n-1$ with n the number of points, what is the t-spanner?

The t-spanner is an MST.

