Lecture Test 2 (1 hour)

Name:	First name:	Class:
N.B.: the exam has 4 pages and 4 exercises.		
Exercise 1: probab	ilities (4 points)	
Let $p \in]0,1[$ and X a random	n variable which is geometric-distributed with para	ameter $p: X \leadsto \operatorname{Geom}(p)$.
1. Express the distribution	on of X .	
2. Find its generating fun	action $G_X(t)$. First, express it as a power series, th	en with the usual functions. Justify.
	ion and the variance of X .	
In the vector space $E = \mathcal{M}_2$	of vectors (6 points) \mathbb{R}), consider the family $\mathcal{F} = \left(A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, this context and with quantifiers, of " \mathcal{F} is linearly	

2.	Is this family \mathcal{F} linearly independent? Justify.
3.	Write the definition, in this context and with quantifiers, of " \mathcal{F} is a spanning family of E ".
4.	Is \mathcal{F} a spanning family of E ? Justify.
5.	Is \mathcal{F} a basis of E ? If it is, find the coordinates in this basis of $U = \begin{pmatrix} -1 & 1 \\ -3 & 2 \end{pmatrix}$. If not, find dim(Span \mathcal{F}). Don't write your computations, but justify your answer.
	ν <u>τ</u> , υ ν

Exercise 3: linear maps (6 points)

2.	Write a necessary and sufficient condition on $\operatorname{Ker}(f)$ and/or $\operatorname{Im}(f)$ for the property " f surjective".
	Write and prove a necessary and sufficient condition on $Ker(f)$ and/or $Im(f)$ for the property "f injective". Take can to prove this condition is necessary and sufficient.

Exercise 4: determinant of a square matrix (4 points)

Consider the matrix $A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & 2 & 3 \\ 2 & 1 & -1 \end{pmatrix}$.

1. For each of the following properties, say whether it is true or false. No need to justify.

(a) For all $B \in \mathcal{M}_3(\mathbb{R})$, $\det(A+B) = \det(A) + \det(B)$

(b) For all $B \in \mathcal{M}_3(\mathbb{R})$, $\det(AB) = \det(A)\det(B)$.

(d) $\det(A) = \det\left(\begin{pmatrix} 1-1 & 2 & -1 \\ -2+3 & 2 & 3 \\ 2-1 & 1 & -1 \end{pmatrix}\right)$

(e) $\det(A) = \det\left(\begin{pmatrix} 0 & 2 & -1 \\ 1 - 1 & 2 - 1 & 3 + 1 \\ 1 & 1 & -1 \end{pmatrix}\right)$

2. Compute the determinant of A.

.....

3. Is the matrix A invertible? Justify.

.....