PHYSICS TEST

Calculators and documents are not allowed.

MCQ (3 points- No négative ponts).

Select the correct answer
1- Consider an electric potential $V(r)=a . r e^{-\frac{b}{r}}$; where a and b are constants. Electric field that derives from this potential has for expression :
a) $\vec{E}=a e^{-\frac{b}{r}}\left(1-\frac{b}{r}\right) \vec{u}_{r}$
b) $\vec{E}=a e^{-\frac{b}{r}}\left(-1-\frac{b}{r}\right) \vec{u}_{r}$
c) $\vec{E}=a e^{-\frac{b}{r}} \vec{u}_{r}$

2- Potential difference between two points A and B is :
a) $V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot \overrightarrow{d l}$
b) $V_{B}-V_{A}=\int_{A}^{B} \vec{E} \cdot \overrightarrow{d l}$
c) None of these answers.

3- Electrostatic force is:
a) always attractive
b) always repulsive
c) always conservative

4-Consider a ring of radius R and axis Z, with a linear and constant charge density λ. A charge element $d Q$ of a length element $d l$ of a ring is given by :
a) $d Q=\lambda d \theta$
b) $d Q=\lambda d R$
c) $d Q=\lambda R d \theta$
d) $d Q=\lambda d R d \theta$

5- A charge q_{A} exerts an electrical force on a charge q_{B}. Vector force $\overrightarrow{F_{A / B}}$ is :

a) $\overrightarrow{F_{A / B}}=k \frac{q_{A}}{(A B)^{2}} \vec{u}$
c) $\overrightarrow{F_{A / B}}=k \frac{\left|q_{A} q_{B}\right|}{(A B)^{2}} \vec{u}$
b) $\overrightarrow{F_{A / B}}=-k \frac{q_{A} q_{B}}{(A B)^{2}} \vec{u}$
d) $\overrightarrow{F_{A / B}}=k \frac{q_{A} q_{B}}{(A B)^{2}} \vec{u}$ ($\vec{u}:$ unit vector)

6- Electric field created by a infinite rod, uniformly charged, at a point M outside the rod is
a) orthogonal to the wire fil
b) Parallel to the wire
c) Not defined

Exercise 1 : Discrete charges distributions (7 POINTS)

Three point charges $(+q,-q,-q)$ are respectively located at vertices A, B and C of an equilateral triangle of side a.

We recall that the angles at the vertices of an equilateral triangle $A B C$ are equal to 60° and the lines $(O A),(O B)$ and (OC) are bisectors and medians.

1- Represent, on the figure above, the electric field vectors $\vec{E}_{A}(O), \vec{E}_{B}(O)$ and $\vec{E}_{C}(O)$ created at the center of the triangle.
2- a) Express the magnitudes of these vectors as functions of k, q, and a. We set $q>0$.
b) Deduce the magnitude of the resulting vector $\vec{E}(O)$, as a function of k, q and a.

3- Express the electric potential $V(O)$ created at O, as a function of k, q and a. Make the numerical application with : $q=4 \times 10^{-9} C$, $\mathrm{a}=2 \mathrm{~cm}$ and $k=9.10^{9} \mathrm{Nm}^{2} / C^{2}$.

4- a) Express the electric potential at point A, as a function of k, q and a.
b) Deduce the electrical potential energy at the same point A, as a function of k, q and a.

Make the numerical application. We have $a=2 \mathrm{~cm}$ and $k=9 \times 10^{9} \mathrm{Nm}^{2} / C^{2}$.

Exercise 2 (4 POINTS)

We consider three point charges ($q,-q$ and $3 q$) placed respectively at points O, M and A on an axis (Ox) of origin O. We have $O M=x$ and $O A=d$. We set $q>0$ and $x>0$.

1- Represent on the diagram above, the electric forces exerted on the negative charge $(-q)$ placed at point M.

2- Express the magnitudes of each of these force vectors as a function of k, q, d and x.

3- Deduce the magnitude of the resulting force at point M, as a function of k, q, d and x.

4- Where should we place point M so that the total force exerted on the charge ($-q$) at point M is zero? We have $d=1 \mathrm{~m}$ and $x>0$.

Exercice 3 Continuous charge distribution. (6 points)

A ring of radius R and axis (Oz) is charged with a constant and positive linear density λ.

1-Study the symmetry of this charge distribution to deduce the direction of the electric field created by the ring at a point M of the Z -axis

2- a) Express the elementary electric field $d E_{z}$ (component of \vec{E} on the axis (Oz) of the vector), created at point M, by a charge element $d Q$.
b) Deduce the expression of the electric field created by the ring, as a function of k, R, λ and z.
\square

3- a) Express the elementary potential $d V(M)$, created at point M, by a charge element $d Q$.
b) Deduce the electric potential $V(M)$ created by the ring, as a function of k, R, λ and z.

4- Find the expression of the electric field established in question $2 b$, using the potential-field mathematical relation. We give the components of the gradient operator in cylindrical coordinates:

$$
\operatorname{grad}\left(\frac{\partial}{\partial r} ; \frac{1}{r} \frac{\partial}{\partial \theta} ; \frac{\partial}{\partial z}\right)
$$

