PHYSICS TEST

Calculators and documents are not allowed.

MCO (3 points- No négative ponts).

Select the correct answer

1- Consider an electric potential $V(r) = a \cdot re^{-\frac{b}{r}}$; where a and b are constants. Electric field that derives from this potential has for expression :

a)
$$\vec{E} = ae^{-\frac{b}{r}}\left(1-\frac{b}{r}\right)\vec{u_r}$$
 b) $\vec{E} = ae^{-\frac{b}{r}}\left(-1-\frac{b}{r}\right)\vec{u_r}$ c) $\vec{E} = ae^{-\frac{b}{r}}\vec{u_r}$

2- Potential difference between two points A and B is :

a)
$$V_B - V_A = -\int_A^B \vec{E} \cdot \vec{dl}$$
 b) $V_B - V_A = \int_A^B \vec{E} \cdot \vec{dl}$ c) None of these answers.

3- Electrostatic force is :

a) always attractive

b) always repulsive

c) always conservative

- 4-Consider a ring of radius R and axis Z, with a linear and constant charge density λ . A charge element dQ of a length element dl of a ring is given by :
 - a) $dQ = \lambda \, d\theta$ b) $dQ = \lambda \, dR$ c) $dQ = \lambda \, Rd\theta$ d) $dQ = \lambda \, dRd\theta$
- 5- A charge q_A exerts an electrical force on a charge q_B . Vector force $\overrightarrow{F_{A/B}}$ is :

a)
$$\overrightarrow{F_{A/B}} = k \frac{q_A}{(AB)^2} \overrightarrow{u}$$

b) $\overrightarrow{F_{A/B}} = -k \frac{q_A q_B}{(AB)^2} \overrightarrow{u}$
c) $\overrightarrow{F_{A/B}} = k \frac{|q_A q_B|}{(AB)^2} \overrightarrow{u}$
d) $\overrightarrow{F_{A/B}} = k \frac{q_A q_B}{(AB)^2} \overrightarrow{u}$
(\overrightarrow{u} : unit vector)

6- Electric field created by a infinite rod, uniformly charged, at a point M outside the rod is

a) orthogonal to the wire fil b) Parallel to the wire c) Not defined

Exercise 1 : Discrete charges distributions (7 POINTS)

Three point charges (+q, -q, -q) are respectively located at vertices A, B and C of an equilateral triangle of side a.

We recall that the angles at the vertices of an equilateral triangle ABC are equal to 60° and the lines (OA), (OB) and (OC) are bisectors and medians.

1- Represent, on the figure above, the electric field vectors $\vec{E}_A(O)$, $\vec{E}_B(O)$ and $\vec{E}_C(O)$ created at the center of the triangle.

2- a) Express the magnitudes of these vectors as functions of k, q, and a. We set q > 0.

3- Express the electric potential V(O) created at O, as a function of k, q and a. Make the numerical application with : $q = 4 \times 10^{-9}C$, a = 2 cm and $k = 9.10^9 \text{ Nm}^2/C^2$.

4- a) Express the electric potential at point A, as a function of k, q and a.

b) Deduce the electrical potential energy at the same point A, as a function of k, q and a. Make the numerical application. We have a = 2 cm and $k = 9 \times 10^9 \text{ Nm}^2/C^2$.

Exercise 2 (4 POINTS)

We consider three point charges (q, -q and 3q) placed respectively at points O, M and A on an axis (Ox) of origin O. We have OM = x and OA = d. We set q > 0 and x > 0.

1- Represent on the diagram above, the electric forces exerted on the negative charge (-q) placed at point M.

2- Express the magnitudes of each of these force vectors as a function of k, q, d and x.

3- Deduce the magnitude of the resulting force at point M, as a function of k, q, d and x.

4- Where should we place point *M* so that the total force exerted on the charge (-q) at point *M* is zero? We have d = 1 m and x > 0.

Exercice 3 Continuous charge distribution. (6 points)

A ring of radius R and axis (Oz) is charged with a constant and positive linear density λ .

1- Study the symmetry of this charge distribution to deduce the direction of the electric field created by the ring at a point M of the Z-axis

2- a) Express the elementary electric field dE_z (component of \vec{E} on the axis (Oz) of the vector), created at point M, by a charge element dQ.

b) Deduce the expression of the electric field created by the ring, as a function of k, R, λ and z.

3- a) Express the elementary potential dV(M), created at point M, by a charge element dQ.

b) Deduce the electric potential V(M) created by the ring, as a function of k, R, λ and z.

4- Find the expression of the electric field established in question 2b, using the potential-field mathematical relation. We give the components of the gradient operator in cylindrical coordinates:

$$\overrightarrow{grad}\left(\frac{\partial}{\partial r};\frac{1}{r}\frac{\partial}{\partial \theta};\frac{\partial}{\partial z}\right)$$