FIRSTNAME: GROUP: GROUP:

Physics Midterm n°1

Calculators and extra-documents are not allowed. Answer only on the exam sheets.

Remember that, except if explicitly written in the questions, the notation $E_A(M)$ corresponds to the **norm** of the field $\overrightarrow{E_A}(M)$. But the angles are oriented.

We will use for convenience the usual constant $k = \frac{1}{4\pi\epsilon_0}$

MCO (4 points-no negative points) Circle the right answer.

1- The electric field, which is generated by a pointlike charge q located at point O, at some point M reads:

a)
$$\vec{E}(M) = k \frac{q}{OM^2} \overrightarrow{OM}$$

a)
$$\vec{E}(M) = k \frac{q}{QM^2} \overrightarrow{OM}$$
 b) $\vec{E}(M) = k \frac{q}{QM^3} \overrightarrow{OM}$ c) $\vec{E}(M) = k \frac{q}{QM} \overrightarrow{OM}$

c)
$$\vec{E}(M) = k \frac{q}{OM} \overline{OM}$$

2- We are looking at the electrostatic force $\vec{F}_{1\rightarrow 2}$ that a charge q_1 located at A creates on a charge q_2 located at B. The norm of this force is given by:

a)
$$F_{1\to 2} = k \frac{q_1 q_2}{AB}$$

b)
$$F_{1\to 2} = k \frac{|q_1||q_2|}{AB}$$
 c) $F_{1\to 2} = k \frac{|q_1||q_2|}{AB^2}$

c)
$$F_{1\to 2} = k \frac{|q_1||q_2|}{AB^2}$$

3- The electrostatic force is a force which is:

a) Always attractive

b) Always repulsive

c) Always conservative

4- Which property does the electrostatic field \vec{E} derived from the potential V satisfy?

a)
$$\vec{E} = -\overrightarrow{arad}(V)$$

b)
$$\vec{E} = \overline{grad}(V)$$

c)
$$V = \overrightarrow{grad}(\vec{E})$$

5- Consider a surfacic distribution of charges σ . An infinitesimal surface element dS located at point P creates at some point M, where there is a charge q, an elementary force \overrightarrow{dF} which reads:

a)
$$\overrightarrow{dF} = kq \frac{\sigma dS}{PM} \overrightarrow{PM}$$

b)
$$\overrightarrow{dF} = kq \frac{\sigma dS}{PM^3} \overrightarrow{PM}$$
 c) $\overrightarrow{dF} = kq \frac{\sigma dS}{PM^2} \overrightarrow{PM}$

c)
$$\overrightarrow{dF} = kq \frac{\sigma dS}{PM^2} \overrightarrow{PM}$$

6- Consider a uniform surfacic distribution of positive charges σ on a cylinder of axis (Oz), of radius R and of length h. Which infinitesimal surface element dS is not relevant for this geometry?

a)
$$dS = rdrd\theta$$

b)
$$dS = dxdy$$

c)
$$dS = rd\theta dz$$

7- We are looking at the limit case of an infinite cylinder of axis (Oz) (with a unitary vector $\overrightarrow{u_z}$), which is uniformly positively charged at its surface. We want to get the electric field $\vec{E}(M)$, where M is located on the (Oz)-axis. What can be claimed?

a)
$$\vec{E}(M) = \vec{0}$$

b)
$$\vec{E}(M)$$
. $\overrightarrow{u_z} > 0$

c)
$$\vec{E}(M)$$
 is divergent.

8- Consider again the finite cylinder of the question 6. At some point M outside the cylinder, the cylindrical components $(E_{\rho}, E_{\theta}, E_{z})$ of the electrostatic field satisfy:

a)
$$E_{\rho}=0$$

b)
$$E_{\theta} = 0$$

c)
$$E_{z} = 0$$

Exercise 1

Consider the following charge distribution (q > 0), which forms a regular hexagon with edge length a and center O.

$$(+q) \stackrel{\mathsf{A}}{\bullet} (-2q) \stackrel{\mathsf{G}}{\bullet} \mathsf{B}$$

1- a) Express the electrostatic fields $\vec{E}_A(O)$, $\vec{E}_C(O)$, $\vec{E}_E(O)$ created at O by the charges which are respectively at points A, C and E. Sketch them on the drawing above.

b) Compute the norm of the total electrostatic field created by these three charges at point O.

EPITA / S3	October 20:
a) Let us put a charge $Q < 0$ at point O. First sketch the force C and E on charge Q . Then express the norm of this force.	e generated by the charges which are
b) Express the electrostatic potential $V(0)$ created at O by the	he charges located at B, D and F.

c) By taking into account all the charges located at the tips of the hexagon, give the expression of the electrostatic potential energy $\mathcal E$ of the charge Q located at Q.

Exercise 2

Consider a surfacic distribution of charges σ , which is uniformly distributed on a ring of radius r, of width dr and center O. The point M is on the (Oz)-axis.

1- Give the expression of the elementary electros surfacic charge dQ centered at P.	tatic field $d\overrightarrow{E_P}(M)$ created at M by an elementary

2- Deduce the total electrostatic field created by this ring at M. Detail your reasoning.
3- We aim to determine the electrostatic field $\vec{E}(M)$ created at M by a disc of radius R , of center O and axis (Oz) .
By using the question 2, first recover the expression $\vec{E}(M) = 2\pi k \sigma z \left(\frac{1}{ z } - \frac{1}{\sqrt{(R^2 + z^2)}}\right) . \vec{u_z}$, and then its
norm.

=	211A / 5 ₃ October 201
i	
	4- By using the symmetries of the charge distribution, comment the limit $R \to \infty$ (infinite plane).
i	

Exercise 3

The electrostatic potential V(x,y,z) is given in Cartesian coordinates by the following expression $V(x,y,z)=k\frac{q}{\sqrt{x^2+y^2+z^2}}$.

1- Express the electric field $\vec{E}(x,y,z)$ deriving from this potential in the basis $(\overrightarrow{u_x},\overrightarrow{u_y},\overrightarrow{u_z})$.

2- Recover, using the question 1, the expression of the unitary radial vector $\overrightarrow{u_r}$ of the spherical basis. You can use the following expression of the gradient given in spherical coordinates, where f(r) is a function of the coordinate r: $\overrightarrow{grad}f = \frac{\partial f}{\partial r}\overrightarrow{u_r}$.

EFITA / 53	
:	