EP	ľ	7	A	/	S ₃

GROUP :.....

NAME:FIRSTNAME:

Physics Midterm 1

Calculators and extra-documents are not allowed. Please answer only on exam sheets

Exercise 1 (8 points)

Three pointlike charges -q, +q and -q (with q > 0) are respectively at points A, B and C of an equilateral triangle whose edge length is a. AB = BC = CA = a.

- 1- Sketch above the electric field vectors $\vec{E}_A(O)$, $\vec{E}_B(O)$ and $\vec{E}_C(O)$ which are generated by the three charged particles at center O of the triangle.
- 2-Express the norm of each vector $\vec{E}_A(O)$, $\vec{E}_B(O)$, $\vec{E}_C(O)$. Then write the norm of the total field vector E(O) in terms of k, q, a.

EPITA / S ₃	November 2017
3- A negative charge (-q) is put at point O. Deduce the direction, the electric force acting on it.	orientation and the norm of the
4-a) Express the potentials V(A), V(B) and V(O) in terms of k, q and point O).	d a (now consider the charge (-q) at
	····

b) Deduce the potential energy of the charge (-q) at point O.

Exercise 2 (6 points)

It can be proven that a length element $d\ell$ of charge dQ creates an elementary electric field at point M which reads $dE_x(M) = \frac{k \cdot \lambda}{x} \cos(\alpha) d\alpha$, where OM = x is the distance between M and the wire.

1-a) Use the latter formula to express the **norms** of the electric field vectors generated separately by each wire AB, BC, CD and DA at center O of the square of length 2a. The wires AB, BC are charged with a positive constant density λ whereas the wires CD and DA are charged with a negative constant density $-\lambda$.

EPITA / S₃	November 2017
b) Sketch vectors $\vec{E}_{AB}(O)$, $\vec{E}_{BC}(O)$, $\vec{E}_{CD}(O)$ and $\vec{E}_{DA}(O)$.	
	,
2- a) Deduce the expression of the norm of the total field $\vec{E}(O)$.	
b) Sketch it.	

Exercise 3 Parts I and II are independent (6 points)

I- One considers the electric potential which reads $V(x, y, z) = 2x^2y - \frac{zy^3}{r}$.

1- Express the components E_x , E_y and E_z of the electric field which is generated by this distribution.

2- Deduce the norm of the electric field \vec{E} at point P (1, 1,1).

II- An electric dipole (-Q, +Q) creates at some point M of the plan (xOy) an electrostatic potential which reads: $V(r,\theta) = k.Q.a.\frac{\cos(\theta)}{r^2}$; where k, Q, a are positive constants.

The gradient in polar coordinates is given by: $grad\left(\frac{\partial}{\partial r}, \frac{1}{r}, \frac{\partial}{\partial \theta}\right)$

- 1- Write the electric field components generated at point M.
- 2- Give in terms of k, Q, a and r_0 the components of $\vec{E}(M_0)$, where M_0 is defined such that: $r = r_0$ and $\theta_0 = \pi/4$.

EPITA / S₃	November 2017