EPITA	/	5 3
-------	---	------------

October 2016

NAME :GROUP:

Physics Exam n°1

Calculators and extra-documents are not allowed.

Answer only on exam sheet please.

Exercise 1 (4 points)

Let's consider two positively charged point-like particles such that their positions are A and B. Point C belongs to AB's bisector and satisfies CA=CB=a. Let's denote OC=d.

- 1- On the above picture sketch the vectors of the electrostatic fields created at C by each charges separately. Then sketch the total field created at C.
- 2- Write explicitly the intensity of the two fields $E_A(C)$ and $E_B(C)$ as function of k, q and a. Write then the total field E(C) as function of k, q, a and d.

3.			n a negative force acting						C. On	the s	ame pi	ctui	e a	bove sket	ch tl	he t	otal	
	Deduce d.	the	expression	of	the	norm	of	this	force	and	write	it	as	function	of	k,	q, a	and
			711															

Exercise 2 (6 points)

One considers fours point-like charges placed at points A, C and D such that ABCD is a square whose edge lenght equals to a.

- 1- Sketch on this picture electrostatic fields created by each charge at point B.
- 2- Write intensities of each of these vectors and deduce the intensity of the total field E(B) (as function of k, q and a).

3- Write the electrostatic potential V(0) created by this charge distribution at point O center of the square.
4- What is the value of the charge one must place at point B in order to make V(O) vanishing?

Exercise 4 (6 points)

In an electroscope two identical spheres with mass m repulse one another due to their positive charge Q. At equilibrium the strings of length L describe an angle θ according to vertical axis.

2- Write the equilibrium condition of one sphere m. (It may be useful to project equations onto a basis $(M\vec{x}, M\vec{y})$ where M is the center of the sphere).
3- a) Deduce the expression of the charge Q of such sphere : $Q = 2L \cdot \sin(\theta) \sqrt{\frac{m \cdot g \cdot \tan(\theta)}{k}}$ where k is Coulomb's constant, g the gravitational field, L the string length, θ the angle between string
and vertical axis, and m the mass of the sphere.
b) Compute Q for : $g = 10ms^{-2}$, $m = 10\sqrt{3}$ g, $\theta = 30^{\circ}$, $L = 70cm$, $k = 9.10^{9} SI$.

Exercise 4

(4 points)

Spherically distributed charges create an electric potential V(M) given by

$$V(r,\theta,\varphi) = \frac{C_1}{r}\sin(\theta)\exp(-C_2.\varphi)$$

1- Write the components E_r , E_{θ} et E_{φ} of the electric field which comes from that potential. Remember that the components of the gradient are given in spherical coordinates by: $grad\left(\frac{\partial}{\partial r}; \frac{1}{r} \frac{\partial}{\partial \theta}; \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}\right)$

2- Compute these components at point M (r = 10^{-2} m, $\theta = \pi/2$, $\varphi = 0$, $C_1 = 10^{-3}$ V.m et $C_2 = 1$ rad⁻¹), and the norm of the field \vec{E} .