Physics exam n°1

Exercise 1 (4 pts)

- 1- As the charges at points A and B are positive the direction of the generated fields is such as above.
- 2- For the intensity of the fields created by A and B we just write the usual expression :

$$E_A(C) = \frac{kq}{a^2} = E_A(C)$$

Then pay attention that we can only write $\vec{E}(C) = \vec{E_A}(C) + \vec{E_B}(C)$ using vectors. To get the norm you used different methods. Here I will use a method that I didn't often see while correcting. First you know that

$$E(C)^{2} = \left\| \overrightarrow{E_{A}}(C) + \overrightarrow{E_{B}}(C) \right\|^{2} = \left\| \overrightarrow{E_{A}}(C) \right\|^{2} + \left\| \overrightarrow{E_{B}}(C) \right\|^{2} + 2 \left\| \overrightarrow{E_{A}}(C) \right\| \cdot \left\| \overrightarrow{E_{B}}(C) \right\| \cdot \cos(2\alpha)$$
$$= 2 \left\| \overrightarrow{E_{A}}(C) \right\|^{2} (1 + \cos(2\alpha)) = 4 \left\| \overrightarrow{E_{A}}(C) \right\|^{2} \cos^{2}(\alpha) = 4 \left(\frac{kq}{a^{2}} \right)^{2} \left(\frac{d}{a} \right)^{2}$$
Thus the norm $E(C)$ is $\frac{2kqd}{a^{3}}$.

3- We can use the link between the field E(C) and $F_{-q}(C) : F_{-q}(C) = |-q| \cdot E(C) = \frac{2kq^2d}{a^3}$

Exercise 2 (6 pts)

- 1- Check on the picture.
- 2- We have the norms quite easily : $E_A(B) = \frac{qk}{a^2} = E_C(B)$ and $E_D(B) = \frac{2qk}{(a\sqrt{2})^2} = \frac{qk}{a^2}$

Obviously $\overrightarrow{E_{A,C}}(B) = \overrightarrow{E_A}(B) + \overrightarrow{E_C}(B)$ has the same direction than $\overrightarrow{E_D}(B)$ so the norm of the electric field is given by the sum of $\|\overrightarrow{E_{A,C}}(B)\| = \frac{qk}{a^2}\sqrt{2}$ and $\|\overrightarrow{E_D}(B)\| = \frac{qk}{a^2}$ i.e. $E(B) = \frac{qk}{a^2}(1+\sqrt{2})$. P.S : Brief remark for those who got another solution : $\sqrt{(1+\sqrt{2})^2} = \sqrt{3+2\sqrt{2}}$...

3- Corners are at distance $\frac{a}{\sqrt{2}}$ from point O. So the potential can be written :

$$V(0) = V_A(0) + V_C(0) + V_D(0) = -\frac{qk\sqrt{2}}{a}(1+1+2) = -4\frac{qk\sqrt{2}}{a}$$

4- The last way of writing the potential enlightens that the potential vanishing condition reads $\frac{q_B k \sqrt{2}}{a} - 4 \frac{q k \sqrt{2}}{a} = 0 \text{ so } q_B = 4q.$

- 1- \vec{T} : tension of the string \vec{P} : weight of the sphere $\vec{F_e}$: repulsive electric force
- 2- The equilibrium condition reads first as a vector equality $\vec{0} = \vec{F_e} + \vec{T} + \vec{P}$ which has to be projected on frame axes. Namely here $\begin{cases} T\cos(\theta) mg = 0 \\ T\sin(\theta) F_e = 0 \end{cases} \iff \begin{cases} T\cos(\theta) = mg \\ T\sin(\theta) = \frac{kQ^2}{4L^2\sin^2(\theta)} \end{cases}$ 3- a- This system implies that $\tan(\theta) = \frac{kQ^2}{4L^2\sin^2(\theta)}\frac{1}{mg}$ and then one recovers the result

$$Q = 2L\sin(\theta) \sqrt{\frac{mg\tan(\theta)}{k}}$$

b- Don't forget to convert the mass in kg and length in m ! One computes : $Q = \frac{7}{3} 10^{-6}$ C

Exercise 4 (4 pts)

1- First I recall that the electric field is derived from potential with the following formula $\vec{E} = -\overrightarrow{grad} V$. Here $V(r, \theta, \varphi) = \frac{c_1}{r} \sin(\theta) e^{-c_2 \varphi}$. The formula with vector notation means the following :

$$\begin{cases} E_r = -\frac{\partial V}{\partial r} \\ E_{\theta} = -\frac{1}{r}\frac{\partial V}{\partial \theta} \\ E_{\varphi} = -\frac{1}{r\sin(\theta)}\frac{\partial V}{\partial \varphi} \end{cases} \Leftrightarrow \begin{cases} E_r = \frac{C_1}{r^2}\sin(\theta)e^{-C_2\varphi} \\ E_{\theta} = -\frac{C_1}{r^2}\cos(\theta)e^{-C_2\varphi} \\ E_{\varphi} = \frac{C_1C_2}{r^2}e^{-C_2\varphi} \end{cases}$$

2- At point M whose coordinates are given one gets $\begin{cases} E_r(M) = 10\\ E_{\theta}(M) = 0\\ E_{\varphi}(M) = 10 \end{cases}$ so $\|\vec{E}\| = 10\sqrt{2}$ V.m⁻¹