Physics exam n ${ }^{\circ} 1$

Exercise 1 (4 pts)

1- As the charges at points A and B are positive the direction of the generated fields is such as above.
2- For the intensity of the fields created by A and B we just write the usual expression :

$$
E_{A}(C)=\frac{k q}{a^{2}}=E_{A}(C)
$$

Then pay attention that we can only write $\vec{E}(C)=\overrightarrow{E_{A}}(C)+\overrightarrow{E_{B}}(C)$ using vectors. To get the norm you used different methods. Here I will use a method that I didn't often see while correcting.
First you know that

$$
\begin{aligned}
E(C)^{2} & =\left\|\overrightarrow{E_{A}}(C)+\overrightarrow{E_{B}}(C)\right\|^{2}=\left\|\overrightarrow{E_{A}}(C)\right\|^{2}+\left\|\overrightarrow{E_{B}}(C)\right\|^{2}+2\left\|\overrightarrow{E_{A}}(C)\right\| \cdot\left\|\overrightarrow{E_{B}}(C)\right\| \cdot \cos (2 \alpha) \\
& =2\left\|\overrightarrow{E_{A}}(C)\right\|^{2}(1+\cos (2 \alpha))=4\left\|\overrightarrow{E_{A}}(C)\right\|^{2} \cos ^{2}(\alpha)=4\left(\frac{k q}{a^{2}}\right)^{2}\left(\frac{d}{a}\right)^{2}
\end{aligned}
$$

Thus the norm $E(C)$ is $\frac{2 k q d}{a^{3}}$.
3- We can use the link between the field $E(C)$ and $F_{-q}(C): F_{-q}(C)=|-q| \cdot E(C)=\frac{2 k q^{2} d}{a^{3}}$

Exercise 2 (6 pts)

1- Check on the picture.
2- We have the norms quite easily : $E_{A}(B)=\frac{q k}{a^{2}}=E_{C}(B)$ and $E_{D}(B)=\frac{2 q k}{(a \sqrt{2})^{2}}=\frac{q k}{a^{2}}$

Obviously $\overrightarrow{E_{A, C}}(B)=\overrightarrow{E_{A}}(B)+\overrightarrow{E_{C}}(B)$ has the same direction than $\overrightarrow{E_{D}}(B)$ so the norm of the electric field is given by the sum of $\left\|\overrightarrow{E_{A, C}}(B)\right\|=\frac{q k}{a^{2}} \sqrt{2}$ and $\left\|\overrightarrow{E_{D}}(B)\right\|=\frac{q k}{a^{2}}$ i.e. $E(B)=\frac{q k}{a^{2}}(1+\sqrt{2})$.
P.S : Brief remark for those who got another solution : $\sqrt{(1+\sqrt{2})^{2}}=\sqrt{3+2 \sqrt{2}} \ldots$

3- Corners are at distance $\frac{a}{\sqrt{2}}$ from point O . So the potential can be written :

$$
V(O)=V_{A}(O)+V_{C}(O)+V_{D}(O)=-\frac{q k \sqrt{2}}{a}(1+1+2)=-4 \frac{q k \sqrt{2}}{a}
$$

4- The last way of writing the potential enlightens that the potential vanishing condition reads $\frac{q_{B} k \sqrt{2}}{a}-4 \frac{q k \sqrt{2}}{a}=0$ so $q_{B}=4 q$.

Exercise 3 (6 pts)

1- \vec{T} : tension of the string
\vec{P} : weight of the sphere
$\overrightarrow{F_{e}}$: repulsive electric force
2- The equilibrium condition reads first as a vector equality $\overrightarrow{0}=\overrightarrow{F_{e}}+\vec{T}+\vec{P}$ which has to be projected on frame axes. Namely here $\left\{\begin{array}{c}T \cos (\theta)-m g=0 \\ T \sin (\theta)-F_{e}=0\end{array} \Leftrightarrow\left\{\begin{array}{c}T \cos (\theta)=m g \\ T \sin (\theta)=\frac{k Q^{2}}{4 L^{2} \sin ^{2}(\theta)}\end{array}\right.\right.$
3- a- This system implies that $\tan (\theta)=\frac{k Q^{2}}{4 L^{2} \sin ^{2}(\theta)} \frac{1}{m g}$ and then one recovers the result

$$
Q=2 L \sin (\theta) \sqrt{\frac{m g \tan (\theta)}{k}}
$$

b- Don't forget to convert the mass in kg and length in m ! One computes: $Q=\frac{7}{3} 10^{-6} \mathrm{C}$

Exercise 4 (4 pts)

1- First I recall that the electric field is derived from potential with the following formula $\vec{E}=-\overrightarrow{g r a d} V$. Here $V(r, \theta, \varphi)=\frac{C_{1}}{r} \sin (\theta) e^{-C_{2} \varphi}$. The formula with vector notation means the following :

$$
\left\{\begin{array} { c }
{ E _ { r } = - \frac { \partial V } { \partial r } } \\
{ E _ { \theta } = - \frac { 1 } { r } \frac { \partial V } { \partial \theta } } \\
{ E _ { \varphi } = - \frac { 1 } { r \operatorname { s i n } (\theta) } \frac { \partial V } { \partial \varphi } }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
E_{r}=\frac{C_{1}}{r^{2}} \sin (\theta) e^{-C_{2} \varphi} \\
E_{\theta}=-\frac{C_{1}}{r^{2}} \cos (\theta) e^{-C_{2} \varphi} \\
E_{\varphi}=\frac{C_{1} C_{2}}{r^{2}} e^{-C_{2} \varphi}
\end{array}\right.\right.
$$

2- At point M whose coordinates are given one gets $\left\{\begin{array}{l}E_{r}(M)=10 \\ E_{\theta}(M)=0 \\ E_{\varphi}(M)=10\end{array}\right.$ so $\|\vec{E}\|=10 \sqrt{2} \mathrm{~V} . \mathrm{m}^{-1}$

