Correction of the midterm exam S3

Exercise 1 (6 points)

1. Find the nature of the series of general term $\quad u_{n}=\ln \left(\cos \left(\frac{1}{n}\right)\right)$. Justify accurately.
$u_{n}=\ln \left(1-\frac{1}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right)=-\frac{1}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right) \sim-\frac{1}{2 n^{2}}$.
Since $-\frac{1}{2 n^{2}}<0$ has a constant sign, $\sum u_{n}$ has the same nature as $-\frac{1}{2} \sum \frac{1}{n^{2}}$.
Since $\sum \frac{1}{n^{2}}$ converges (Riemann), $\sum u_{n}$ converges too.
2. Find the nature of the series of general term $\quad u_{n}=\frac{(n!)^{2}}{(3 n)!}$. Justify accurately.

The sequence $\left(u_{n}\right)$ is strictly positive.
Furthermore, for all $n \in \mathbb{N}, \frac{u_{n+1}}{u_{n}}=\frac{(n+1)^{2}}{(3 n+3)(3 n+2)(3 n+1)} \sim \frac{n^{2}}{27 n^{3}}=\frac{1}{27 n}$.
Hence, $\lim _{n \rightarrow+\infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow+\infty} \frac{1}{27 n}=0$.
Since $0<1, \sum u_{n}$ converges using the ratio test theorem.
3. Find the nature of the series of general term $\quad u_{n}=\frac{(-1)^{n}}{n \ln (n)}$. Justify accurately.

The sequence $\left(u_{n}\right)$ is alternating. Furthermore, $\left(\left|u_{n}\right|\right)=\left(\frac{1}{n \ln (n)}\right)$ is decreasing and converges to 0 .
Finally, $\sum u_{n}$ converges using Leibniz's theorem.

Exercise 2 (6 points)

Consider the series of general term $u_{n}=\frac{(-1)^{n}}{\sqrt{n}+(-1)^{n}}$.

1. Find $a \in \mathbb{R}$ such that $u_{n}=\frac{(-1)^{n}}{\sqrt{n}}+\frac{a}{n}+o\left(\frac{1}{n}\right)$.

Note that u_{n} can be written

$$
u_{n}=\frac{(-1)^{n}}{\sqrt{n}} \times \frac{1}{1+\frac{(-1)^{n}}{\sqrt{n}}}
$$

Using the following TE in $0: \frac{1}{1+x}=1-x+o(x)$, we get

$$
u_{n}=\frac{(-1)^{n}}{\sqrt{n}} \times\left(1-\frac{(-1)^{n}}{\sqrt{n}}+o\left(\frac{1}{\sqrt{n}}\right)\right)=\frac{(-1)^{n}}{\sqrt{n}}-\frac{1}{n}+o\left(\frac{1}{n}\right)
$$

using $-(-1)^{2 n}=-1$. Thus,, $a=-1$.
2. Find the nature of $\sum u_{n}$.

Let $v_{n}=\frac{(-1)^{n}}{\sqrt{n}}$ and $w_{n}=-\frac{1}{n}+o\left(\frac{1}{n}\right)$.
$\sum v_{n}$ converges using Leibniz's theorem. Indeed, $\left(v_{n}\right)$ is alternating and $\left(\left|v_{n}\right|\right)=\left(\frac{1}{\sqrt{n}}\right)$ is decreasing and converges to 0 .
$w_{n} \sim-\frac{1}{n}$. Note that $-\frac{1}{n}<0$ has a constant sign. Hence, $\sum w_{n}$ as he same nature as $\sum \frac{-1}{n}$, which diverges. Thus, $\sum w_{n}$ diverges.
Finally, $\sum u_{n}$ diverges because it is the sum of a convergent series and a divergent series.
3. Show that $u_{n} \sim \frac{(-1)^{n}}{\sqrt{n}}$

We have to show that $u_{n}=\frac{(-1)^{n}}{\sqrt{n}}+o\left(\frac{(-1)^{n}}{\sqrt{n}}\right)$.
Since $u_{n}=\frac{(-1)^{n}}{\sqrt{n}}-\frac{1}{n}+o\left(\frac{1}{n}\right)$, we have to show that $-\frac{1}{n}+o\left(\frac{1}{n}\right)=o\left(\frac{(-1)^{n}}{\sqrt{n}}\right)$.
But

$$
\frac{-\frac{1}{n}+o\left(\frac{1}{n}\right)}{\frac{(-1)^{n}}{\sqrt{n}}}=(-1)^{n}\left(\frac{-1}{\sqrt{n}}+o\left(\frac{1}{\sqrt{n}}\right)\right) \xrightarrow[n \rightarrow+\infty]{ } 0
$$

Hence, $u_{n}=\frac{(-1)^{n}}{\sqrt{n}}+o\left(\frac{(-1)^{n}}{\sqrt{n}}\right)$, that is, $u_{n} \sim \frac{(-1)^{n}}{\sqrt{n}}$.
4. Do the series $\sum u_{n}$ and $\sum \frac{(-1)^{n}}{\sqrt{n}}$ have the same nature? Explain why.

The series don't have the same nature: $\sum u_{n}$ diverges while $\sum \frac{(-1)^{n}}{\sqrt{n}}$ converges. Comparison methods are not valid here, because $\left(u_{n}\right)$ has no constant \sin.

Exercise 3 (7 points)

Let $a \in] 0, \pi\left[\right.$ and consider the sequence $\left(u_{n}\right)$ defined for all $n \in \mathbb{N}^{*}$ by

$$
u_{n}=n!\times \prod_{k=1}^{n} \sin \left(\frac{a}{k}\right)=n!\times\left(\sin \left(\frac{a}{1}\right) \sin \left(\frac{a}{2}\right) \cdots \sin \left(\frac{a}{n}\right)\right)
$$

Accept without proof that $\left(u_{n}\right)$ is strictly positive. The purpose of the exercise is to study the nature of $\sum u_{n}$ depending a.

1. Assume in this question that $a \neq 1$. Using the ratio test (d'Alembert test), discuss the nature of $\sum u_{n}$ depending on a. $\frac{u_{n+1}}{u_{n}}=(n+1) \sin \left(\frac{a}{n+1}\right)$. Furthermore, as x approaches $0, \sin (x) \sim x$. Hence, as n approaches $+\infty$,

$$
\frac{u_{n+1}}{u_{n}} \sim(n+1) \times\left(\frac{a}{n+1}\right) \sim a \Longrightarrow \lim _{n \rightarrow+\infty} \frac{u_{n+1}}{u_{n}}=a
$$

Finally, using the ratio test, $\sum u_{n}$ converges if $a<1$ and diverges if $a>1$.
2. Assume in this question that $a=1$. Consider the series $\sum \ln \left(n \sin \left(\frac{1}{n}\right)\right)$ and the sequence $\left(S_{n}\right)$ of its partial sums.
(a) Show that for all $n \in \mathbb{N}^{*}, S_{n}=\ln \left(u_{n}\right)$.

Keep in mind that $n!=\prod_{k=1}^{n} k$. Thus,

$$
\ln \left(u_{n}\right)=\ln \left(\prod_{k=1}^{n} k \sin \left(\frac{a}{k}\right)\right)=\sum_{k=1}^{n} \ln \left(k \sin \left(\frac{1}{k}\right)\right)=S_{n}
$$

(b) Study the nature of $\sum \ln \left(n \sin \left(\frac{1}{n}\right)\right)$.

$$
\ln \left(n \sin \left(\frac{1}{n}\right)\right)=\ln \left(n \times\left(\frac{1}{n}-\frac{1}{6 n^{3}}+o\left(\frac{1}{n^{3}}\right)\right)\right)=\ln \left(1-\frac{1}{6 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right)
$$

Hence,

$$
\ln \left(n \sin \left(\frac{1}{n}\right)\right)=-\frac{1}{6 n^{2}}+o\left(\frac{1}{n^{2}}\right) \sim-\frac{1}{6 n^{2}}
$$

Furthermore, $-\frac{1}{6 n^{2}}<0$ has a constant sign. Hence, $\sum \ln \left(n \sin \left(\frac{1}{n}\right)\right)$ has the same nature as $\sum-\frac{1}{6 n^{2}}$ which converges (Riemann series).
Finally, $\sum \ln \left(n \sin \left(\frac{1}{n}\right)\right)$ converges.
(c) What can you deduce about the sequence $\left(u_{n}\right)$?

The sequence $\left(S_{n}\right)$ converges according to previous question. Let ℓ denote its limit. Then

$$
u_{n}=e^{S_{n}} \Longrightarrow u_{n} \xrightarrow[n \rightarrow+\infty]{ } e^{\ell}
$$

The sequence $\left(u_{n}\right)$ is hence convergent.
(d) Is the series $\sum u_{n}$ convergent?

The sequence (u_{n}) converges to e^{ℓ} which is non-zero (because the exponential function does not evaluate to 0). Thus, $\left(u_{n}\right)$ does not converge to 0 and the series $\sum u_{n}$ diverges.

Exercise 4: some lecture questions and a theorem's proof (5.5 points)

Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ be two strictly positive sequences.

1. Assume in this question that $\left(u_{n}\right) \leqslant\left(v_{n}\right)$ above a certain rank, that is, there exists $n_{0} \in \mathbb{N}$ such that

$$
\forall n \in \mathbb{N}, \quad n \geqslant n_{0} \Longrightarrow u_{n} \leqslant v_{n}
$$

In each of the expressions below, replace the dotted lines with one of the symbols $\Longrightarrow, \Longleftarrow$ or \Longleftrightarrow :
(a) $\sum u_{n}$ converges $\Longleftarrow \sum v_{n}$ converges
(b) $\sum u_{n}$ diverges $\Longrightarrow \sum v_{n}$ diverges
2. Assume in this question that, as n approaches $+\infty, u_{n} \sim v_{n}$.
(a) What can you say about the series $\sum u_{n}$ and $\sum v_{n}$?

The series have the same nature.
(b) Prove this property. You will accept without proof the properties of question 1.

Assume that $\left(u_{n}\right) \sim\left(v_{n}\right)$. Then there exists a sequence $\left(\varepsilon_{n}\right)$ such that

$$
\forall n \in \mathbb{N}, u_{n}=v_{n} \times\left(1+\varepsilon_{n}\right) \quad \text { and } \quad \varepsilon_{n} \xrightarrow[n \rightarrow+\infty]{ } 0
$$

Since $\left(\varepsilon_{n}\right)$ converges to 0 , it remains between $-\frac{1}{2}$ and $+\frac{1}{2}$ above a certain rank: there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{aligned}
\forall n \in \mathbb{N}, n \geqslant n_{0} & \Longrightarrow-\frac{1}{2} \leqslant \varepsilon_{n} \leqslant \frac{1}{2} \\
& \Longrightarrow \frac{1}{2} \leqslant 1+\varepsilon_{n} \leqslant \frac{3}{2} \\
& \Longrightarrow \frac{1}{2} v_{n} \leqslant u_{n} \leqslant \frac{3}{2} v_{n}
\end{aligned}
$$

If $\sum u_{n}$ converges then, using property 1.a and the relation $\frac{1}{2} v_{n} \leqslant u_{n}$, we know that $\sum \frac{1}{2} v_{n}$ converges. Thus, $\sum v_{n}$ converges.
If $\sum u_{n}$ diverges then, using property $1 . b$ and the relation $u_{n} \leqslant \frac{3}{2} v_{n}$, we know that $\sum \frac{3}{2} v_{n}$ diverges. Thus, $\sum v_{n}$ diverges.

Exercise 5: probabilities (6.5 points)

A student is doing an exam made of MCQ questions. The exam has 20 questions, each question counts for 1 point. The total mark at the exam is hence a mark out of 20 . The questions have neither negative nor intermediate points: at each question, the mark is 0 or 1 , no other values are possible.
The student did not prepare his exam and decides to answer randomly. His choices are independent and, at each question, he has a probability $p \in] 0,1[$ of choosing the right answer. (same value of p at each question)

1. For all $k \in \llbracket 1,20 \rrbracket$, consider the random variable $\quad X_{k}=$ "Mark of the student at question k ".
(a) Let $k \in \llbracket 1,20 \rrbracket$. What is the distribution of X_{k} ?

$$
X_{k}(\Omega)=\{0,1\}, \quad P\left(X_{k}=0\right)=1-p \quad \text { et } \quad P\left(X_{k}=1\right)=p
$$

Thus, $X_{k} \rightsquigarrow \operatorname{Bernoulli}(p)$.
(b) Find the generating function $G_{X_{k}}$ of variable X_{k}.

$$
G_{X_{k}}(t)=(1-p)+p t
$$

(c) Using $G_{X_{k}}$, compute the expectation and the variance of X_{k}.

For all $t \in \mathbb{R}, G_{X_{k}}{ }^{\prime}(t)=p \Longrightarrow \mathrm{E}\left(X_{k}\right)=G_{X_{k}}{ }^{\prime}(1)=p$
Furthermore, for all $t \in \mathbb{R}$,

$$
G_{X_{k}}{ }^{\prime \prime}(t)=0 \Longrightarrow \operatorname{Var}\left(X_{k}\right)=G_{X_{k}}{ }^{\prime \prime}(1)+\mathrm{E}\left(X_{k}\right)-\mathrm{E}^{2}\left(X_{k}\right)=0+p-p^{2}=p(1-p)
$$

2. Consider the random variable $\quad Y=$ "Total mark of the student at the exam".
(a) Find the generating function of variable Y. Justify your answer.
$Y=X_{1}+X_{2}+\cdots+X_{20}$. Since he variables X_{k} are independent, we get:

$$
\forall t \in \mathbb{R}, G_{Y}(t)=G_{X_{1}}(t) \times \cdots \times G_{X_{20}}(t)=((1-p)+p t)^{20}
$$

(b) Find the distribution of Y.

Let us expand $G_{Y}(t)$ using the binomial formula: for all $t \in \mathbb{R}$,

$$
G_{Y}(t)=\sum_{k=0}^{20}\binom{20}{k}(p t)^{k}(1-p)^{20-k}=\sum_{k=0}^{20}\binom{20}{k} p^{k}(1-p)^{20-k} t^{k}
$$

Thus,

$$
Y(\Omega)=\llbracket 0,20 \rrbracket \quad \text { and } \quad \forall k \in \llbracket 0,20 \rrbracket, P(Y=k)=\binom{20}{k} p^{k}(1-p)^{20-k}
$$

(c) Compute the expectation and the variance of Y.
$Y=X_{1}+\cdots+X_{20} \Longrightarrow \mathrm{E}(Y)=\mathrm{E}\left(X_{1}\right)+\cdots+\mathrm{E}\left(X_{20}\right)=p+\cdots+p=20 p$
Furthermore, because the variables X_{k} are independent,

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{20}\right)=p(1-p)+\cdots+p(1-p)=20 p(1-p)
$$

Exercise 6: power series (6 points)

1. Find the radius of convergence R_{1} of the power series $\sum \frac{x^{n}}{n!}$. Justify your answer.

Ratio theorem for power series: $\frac{\left|\frac{1}{(n+1)!}\right|}{\left|\frac{1}{n!}\right|}=\frac{n!}{(n+1)!}=\frac{1}{n+1} \xrightarrow[n \rightarrow+\infty]{ } 0$.
The radius of convergence of the power series is hence $R_{1}=+\infty$.
2. Find (do not justify) a simple expression, using the basic functions, of its sum function, defined for all $x \in]-R_{1}, R_{1}[$ by

$$
f(x)=\sum_{n=0}^{+\infty} \frac{x^{n}}{n!}
$$

This is the exponential series. Its sum function is $f(x)=e^{x}$
3. Deduce the radius of convergence and a simple expression of the sum function of $\sum \frac{2^{n}}{n!} x^{n}$.

We get this series by injecting à $X=2 x$ in the previous series. It converges for all $X \in \mathbb{R}$, that is, for all $x \in \mathbb{R}$.
Its sum is hence $\sum_{n=0}^{+\infty} \frac{(2 x)^{n}}{n!}=e^{2 x}$, its radius of convergence is $+\infty$.
4. Find a simple expression of $\sum_{n=3}^{+\infty} \frac{x^{n}}{(n-3)!}$.
$\sum_{n=3}^{+\infty} \frac{x^{n}}{(n-3)!}=x^{3} \times \sum_{n=3}^{+\infty} \frac{x^{n-3}}{(n-3)!}=x^{3} \times \sum_{k=0}^{+\infty} \frac{x^{k}}{k!}$ by setting $k=n-3$.
Hence, $\sum_{n=3}^{+\infty} \frac{x^{n}}{(n-3)!}=x^{3} e^{x}$.
5. Show that the function $g: x \longmapsto \frac{1}{1+2 x}$ can be expressed with the form $g(x)=\sum_{n=0}^{+\infty}(-2)^{n} x^{n}$.

What is the radius of convergence R_{2} of this power series?
The power series $\sum(-2)^{n} x^{n}$ can be written $\sum(-2 x)^{n}$. It is a geometric series, it converges if and only if $|-2 x|<1$, that is, if and only if $|x|<\frac{1}{2}$. Thus, $R_{2}=\frac{1}{2}$. Furthermore, when the series converges, its sum is

$$
\sum_{n=0}^{+\infty}(-2 x)^{n}=\frac{1}{1-(-2 x)}=\frac{1}{1+2 x}
$$

6. Express the function $x \longmapsto \ln (1+2 x)$ as a power series and find its radius of convergence.

Let us integrate the power series of previous question: we get

$$
\int_{0}^{x} \frac{1}{1+2 t} \mathrm{~d} t=\frac{1}{2} \ln (1+2 x)=\sum_{n=0}^{+\infty}(-2)^{n} \frac{x^{n+1}}{n+1}
$$

and the radius of convergence is the same as at previous question. It results that

$$
\ln (1+2 x)=\sum_{n=0}^{+\infty} 2 \times(-2)^{n} \frac{x^{n+1}}{n+1}=-\sum_{n=0}^{+\infty}(-2)^{n+1} \frac{x^{n+1}}{n+1}
$$

The radius of convergence is $\frac{1}{2}$.
7. Express the function $x \longmapsto \frac{x^{2}}{(1+2 x)^{2}}$ as a power series and find its radius of convergence.

Let us differentiate the power series of question 5 . We get

$$
\frac{-2}{(1+2 x)^{2}}=\sum_{n=1}^{+\infty}(-2)^{n} n x^{n-1} \quad \text { and the radius of convergence is } R_{2}=\frac{1}{2}
$$

Hence,

$$
\frac{1}{(1+2 x)^{2}}=\sum_{n=1}^{+\infty}(-2)^{n-1} n x^{n-1} \Longrightarrow \frac{x^{2}}{(1+2 x)^{2}}=\sum_{n=1}^{+\infty}(-2)^{n-1} n x^{n+1}
$$

Exercise 7: infinite probabilities (4 points)

Consider a random variable X admitting a generating function of the form $G_{X}(t)=a e^{2 t}$, where $a \in \mathbb{R}$.

1. What is the value of a ?

$$
G_{X}(1)=1 \Longrightarrow a e^{2}=1 \Longrightarrow a=e^{-2}
$$

2. By expressing $G_{X}(t)$ as a power series, find the distribution of X.

Let us express $G_{X}(t)$ as a power series:

$$
G_{X}(t)=e^{-2} \sum_{n=0}^{+\infty} \frac{(2 t)^{n}}{n!}=\sum_{n=0}^{+\infty} e^{-2} \frac{2^{n}}{n!} t^{n}
$$

Thus,

$$
X(\Omega)=\mathbb{N} \quad \text { and } \quad \forall n \in \mathbb{N}, P(X=n)=e^{-2} \frac{2^{n}}{n!}
$$

3. Compute the expectation and the variance of X.

For all $t \in \mathbb{R}, \quad G_{X}{ }^{\prime}(t)=e^{-2} \times 2 e^{2 t} \quad$ and $\quad G_{X}{ }^{\prime \prime}(t)=e^{-2} \times 4 e^{2 t}$
Thus, $\quad \mathrm{E}(X)=G_{X}{ }^{\prime}(1)=e^{-2} \times 2 e^{2}=2$.
And $\quad \operatorname{Var}(X)=G_{X}{ }^{\prime \prime}(1)+\mathrm{E}(X)-\mathrm{E}^{2}(X)=4+2-4=2$.

