Correction of the midterm exam S3

Exercise 1 (6 points)

 Find the nature of the series of general term u_n = ln (cos (1/n)). Justify accurately. u_n = ln (1 - 1/(2n²) + o (1/(n²))) = -1/(2n²) + o (1/(n²)) ~ -1/(2n²). Since -1/(2n²) < 0 has a constant sign, ∑u_n has the same nature as -1/2∑1/(n²). Since ∑ 1/(n²) converges (Riemann), ∑u_n converges too.
Find the nature of the series of general term u_n = (n!)²/((3n)!). Justify accurately. The sequence (u_n) is strictly positive. Furthermore, for all n ∈ N, (u_{n+1}/(u_n) = (n+1)²/((3n+3)(3n+2)(3n+1)) ~ n²/(27n³) = 1/(27n). Hence, lim_{n→+∞} (u_{n+1}/(u_n) = lim_{n→+∞} 1/(27n) = 0.

Since 0 < 1, $\sum u_n$ converges using the ratio test theorem.

3. Find the nature of the series of general term $u_n = \frac{(-1)^n}{n \ln(n)}$. Justify accurately. The sequence (u_n) is alternating. Furthermore, $(|u_n|) = \left(\frac{1}{n \ln(n)}\right)$ is decreasing and converges to 0. Finally, $\sum u_n$ converges using Leibniz's theorem.

Exercise 2 (6 points)

Consider the series of general term $u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

1. Find $a \in \mathbb{R}$ such that $u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{a}{n} + o\left(\frac{1}{n}\right)$.

Note that u_n can be written

$$u_n = \frac{(-1)^n}{\sqrt{n}} \times \frac{1}{1 + \frac{(-1)^n}{\sqrt{n}}}$$

Using the following TE in 0: $\frac{1}{1+x} = 1 - x + o(x)$, we get

$$u_n = \frac{(-1)^n}{\sqrt{n}} \times \left(1 - \frac{(-1)^n}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right) = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + o\left(\frac{1}{n}\right)$$

using $-(-1)^{2n} = -1$. Thus, a = -1.

2. Find the nature of $\sum u_n$.

Let
$$v_n = \frac{(-1)^n}{\sqrt{n}}$$
 and $w_n = -\frac{1}{n} + o\left(\frac{1}{n}\right)$.

 $\sum v_n$ converges using Leibniz's theorem. Indeed, (v_n) is alternating and $(|v_n|) = \left(\frac{1}{\sqrt{n}}\right)$ is decreasing and converges to 0.

 $w_n \sim -\frac{1}{n}$. Note that $-\frac{1}{n} < 0$ has a constant sign. Hence, $\sum w_n$ as he same nature as $\sum \frac{-1}{n}$, which diverges. Thus, $\sum w_n$ diverges.

Finally, $\sum u_n$ diverges because it is the sum of a convergent series and a divergent series.

3. Show that $u_n \sim \frac{(-1)^n}{\sqrt{n}}$

We have to show that $u_n = \frac{(-1)^n}{\sqrt{n}} + o\left(\frac{(-1)^n}{\sqrt{n}}\right).$

Since $u_n = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + o\left(\frac{1}{n}\right)$, we have to show that $-\frac{1}{n} + o\left(\frac{1}{n}\right) = o\left(\frac{(-1)^n}{\sqrt{n}}\right)$.

 But

$$\frac{-\frac{1}{n} + o\left(\frac{1}{n}\right)}{\frac{(-1)^n}{\sqrt{n}}} = (-1)^n \left(\frac{-1}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right) \xrightarrow[n \to +\infty]{} 0$$

Hence, $u_n = \frac{(-1)^n}{\sqrt{n}} + o\left(\frac{(-1)^n}{\sqrt{n}}\right)$, that is, $u_n \sim \frac{(-1)^n}{\sqrt{n}}$.

4. Do the series $\sum u_n$ and $\sum \frac{(-1)^n}{\sqrt{n}}$ have the same nature? Explain why.

The series don't have the same nature: $\sum u_n$ diverges while $\sum \frac{(-1)^n}{\sqrt{n}}$ converges. Comparison methods are not valid here, because (u_n) has no constant sin.

Exercise 3 (7 points)

Let $a \in [0, \pi[$ and consider the sequence (u_n) defined for all $n \in \mathbb{N}^*$ by

$$u_n = n! \times \prod_{k=1}^n \sin\left(\frac{a}{k}\right) = n! \times \left(\sin\left(\frac{a}{1}\right)\sin\left(\frac{a}{2}\right) \cdots \sin\left(\frac{a}{n}\right)\right)$$

Accept without proof that (u_n) is strictly positive. The purpose of the exercise is to study the nature of $\sum u_n$ depending a.

1. Assume in this question that $a \neq 1$. Using the ratio test (d'Alembert test), discuss the nature of $\sum u_n$ depending on a.

 $\frac{u_{n+1}}{u_n} = (n+1)\sin\left(\frac{a}{n+1}\right).$ Furthermore, as x approaches 0, $\sin(x) \sim x$. Hence, as n approaches $+\infty$,

$$\frac{u_{n+1}}{u_n} \sim (n+1) \times \left(\frac{a}{n+1}\right) \sim a \Longrightarrow \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = a$$

Finally, using the ratio test, $\sum u_n$ converges if a < 1 and diverges if a > 1.

2. Assume in this question that a = 1. Consider the series $\sum \ln \left(n \sin \left(\frac{1}{n}\right)\right)$ and the sequence (S_n) of its partial sums.

(a) Show that for all $n \in \mathbb{N}^*$, $S_n = \ln(u_n)$.

Keep in mind that $n! = \prod_{k=1}^{n} k$. Thus,

$$\ln(u_n) = \ln\left(\prod_{k=1}^n k \sin\left(\frac{a}{k}\right)\right) = \sum_{k=1}^n \ln\left(k \,\sin\left(\frac{1}{k}\right)\right) = S_n$$

(b) Study the nature of $\sum \ln\left(n \sin\left(\frac{1}{n}\right)\right)$.

$$\ln\left(n\,\sin\left(\frac{1}{n}\right)\right) = \ln\left(n\times\left(\frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)\right)\right) = \ln\left(1 - \frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)\right)$$

Hence,

$$\ln\left(n\,\sin\left(\frac{1}{n}\right)\right) = -\frac{1}{6n^2} + o\left(\frac{1}{n^2}\right) \sim -\frac{1}{6n^2}$$

Furthermore, $-\frac{1}{6n^2} < 0$ has a constant sign. Hence, $\sum \ln \left(n \sin \left(\frac{1}{n}\right)\right)$ has the same nature as $\sum -\frac{1}{6n^2}$ which converges (Riemann series).

Finally,
$$\sum \ln \left(n \sin \left(\frac{1}{n} \right) \right)$$
 converges.

(c) What can you deduce about the sequence (u_n) ?

The sequence (S_n) converges according to previous question. Let ℓ denote its limit. Then

$$u_n = e^{S_n} \Longrightarrow u_n \xrightarrow[n \to +\infty]{} e^\ell$$

The sequence (u_n) is hence convergent.

(d) Is the series $\sum u_n$ convergent?

The sequence (u_n) converges to e^{ℓ} which is non-zero (because the exponential function does not evaluate to 0). Thus, (u_n) does not converge to 0 and the series $\sum u_n$ diverges.

Exercise 4: some lecture questions and a theorem's proof (5.5 points)

Let (u_n) and (v_n) be two strictly positive sequences.

1. Assume in this question that $(u_n) \leq (v_n)$ above a certain rank, that is, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n \in \mathbb{N}, \quad n \ge n_0 \Longrightarrow u_n \leqslant v_n$$

In each of the expressions below, replace the dotted lines with one of the symbols \Longrightarrow , \Leftarrow or \iff :

- (a) $\sum u_n$ converges $\Leftarrow \sum v_n$ converges
- (b) $\sum u_n$ diverges $\implies \sum v_n$ diverges
- 2. Assume in this question that, as n approaches $+\infty$, $u_n \sim v_n$.
 - (a) What can you say about the series $\sum u_n$ and $\sum v_n$?

The series have the same nature.

(b) Prove this property. You will accept without proof the properties of question 1.

Assume that $(u_n) \sim (v_n)$. Then there exists a sequence (ε_n) such that

 $\forall n \in \mathbb{N}, u_n = v_n \times (1 + \varepsilon_n) \qquad \text{and} \qquad \varepsilon_n \xrightarrow[n \to +\infty]{} 0$

Since (ε_n) converges to 0, it remains between $-\frac{1}{2}$ and $+\frac{1}{2}$ above a certain rank: there exists $n_0 \in \mathbb{N}$ such that

$$\begin{aligned} \forall n \in \mathbb{N}, \ n \geqslant n_0 & \Longrightarrow & -\frac{1}{2} \leqslant \varepsilon_n \leqslant \frac{1}{2} \\ & \Longrightarrow & \frac{1}{2} \leqslant 1 + \varepsilon_n \leqslant \frac{3}{2} \\ & \Longrightarrow & \frac{1}{2} v_n \leqslant u_n \leqslant \frac{3}{2} v_n \end{aligned}$$

If $\sum u_n$ converges then, using property 1.a and the relation $\frac{1}{2}v_n \leq u_n$, we know that $\sum \frac{1}{2}v_n$ converges. Thus, $\sum v_n$ converges.

If $\sum u_n$ diverges then, using property 1.b and the relation $u_n \leq \frac{3}{2}v_n$, we know that $\sum \frac{3}{2}v_n$ diverges. Thus, $\sum v_n$ diverges.

A student is doing an exam made of MCQ questions. The exam has 20 questions, each question counts for 1 point. The total mark at the exam is hence a mark out of 20. The questions have neither negative nor intermediate points: at each question, the mark is 0 or 1, no other values are possible.

The student did not prepare his exam and decides to answer randomly. His choices are independent and, at each question, he has a probability $p \in]0,1[$ of choosing the right answer. (same value of p at each question)

- 1. For all $k \in [1, 20]$, consider the random variable $X_k =$ "Mark of the student at question k".
 - (a) Let $k \in [\![1, 20]\!]$. What is the distribution of X_k ?

$$X_k(\Omega) = \{0, 1\}, \quad P(X_k=0) = 1 - p \text{ et } P(X_k=1) = p$$

Thus, $X_k \rightsquigarrow \text{Bernoulli}(p)$.

(b) Find the generating function G_{X_k} of variable X_k .

$$G_{X_k}(t) = (1-p) + pt$$

(c) Using G_{X_k} , compute the expectation and the variance of X_k .

For all
$$t \in \mathbb{R}$$
, $G_{X_k}'(t) = p \Longrightarrow E(X_k) = G_{X_k}'(1) = p$

Furthermore, for all $t \in \mathbb{R}$,

$$G_{X_k}''(t) = 0 \Longrightarrow \operatorname{Var}(X_k) = G_{X_k}''(1) + \operatorname{E}(X_k) - \operatorname{E}^2(X_k) = 0 + p - p^2 = p(1-p)$$

- 2. Consider the random variable Y = "Total mark of the student at the exam".
 - (a) Find the generating function of variable Y. Justify your answer.

 $Y = X_1 + X_2 + \dots + X_{20}$. Since he variables X_k are independent, we get:

$$\forall t \in \mathbb{R}, \ G_Y(t) = G_{X_1}(t) \times \dots \times G_{X_{20}}(t) = ((1-p)+pt)^{20}$$

(b) Find the distribution of Y.

Let us expand $G_Y(t)$ using the binomial formula: for all $t \in \mathbb{R}$,

$$G_Y(t) = \sum_{k=0}^{20} \binom{20}{k} (pt)^k (1-p)^{20-k} = \sum_{k=0}^{20} \binom{20}{k} p^k (1-p)^{20-k} t^k$$

Thus,

$$Y(\Omega) = [0, 20]$$
 and $\forall k \in [0, 20], P(Y=k) = {20 \choose k} p^k (1-p)^{20-k}$

(c) Compute the expectation and the variance of Y.

 $Y = X_1 + \dots + X_{20} \Longrightarrow E(Y) = E(X_1) + \dots + E(X_{20}) = p + \dots + p = 20p$ Furthermore, because the variables X_k are independent,

$$\operatorname{Var}(Y) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_{20}) = p(1-p) + \dots + p(1-p) = 20p(1-p)$$

Exercise 6: power series (6 points)

1. Find the radius of convergence R_1 of the power series $\sum \frac{x^n}{n!}$. Justify your answer.

Ratio theorem for power series: $\frac{\left|\frac{1}{(n+1)!}\right|}{\left|\frac{1}{n!}\right|} = \frac{n!}{(n+1)!} = \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0.$

The radius of convergence of the power series is hence $R_1 = +\infty$.

2. Find (do not justify) a simple expression, using the basic functions, of its sum function, defined for all $x \in [-R_1, R_1]$ by

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

This is the exponential series. Its sum function is $f(x) = e^x$

3. Deduce the radius of convergence and a simple expression of the sum function of $\sum \frac{2^n}{n!} x^n$.

We get this series by injecting à X = 2x in the previous series. It converges for all $X \in \mathbb{R}$, that is, for all $x \in \mathbb{R}$.

Its sum is hence
$$\sum_{n=0}^{+\infty} \frac{(2x)^n}{n!} = e^{2x}$$
, its radius of convergence is $+\infty$

4. Find a simple expression of $\sum_{n=3}^{+\infty} \frac{x^n}{(n-3)!}$.

$$\sum_{n=3}^{+\infty} \frac{x^n}{(n-3)!} = x^3 \times \sum_{n=3}^{+\infty} \frac{x^{n-3}}{(n-3)!} = x^3 \times \sum_{k=0}^{+\infty} \frac{x^k}{k!} \text{ by setting } k = n-3.$$

Hence,
$$\sum_{n=3}^{+\infty} \frac{x^n}{(n-3)!} = x^3 e^x.$$

5. Show that the function $g: x \mapsto \frac{1}{1+2x}$ can be expressed with the form $g(x) = \sum_{n=0}^{+\infty} (-2)^n x^n$. What is the radius of convergence R_2 of this power series?

The power series $\sum (-2)^n x^n$ can be written $\sum (-2x)^n$. It is a geometric series, it converges if and only if |-2x| < 1, that is, if and only if $|x| < \frac{1}{2}$. Thus, $R_2 = \frac{1}{2}$. Furthermore, when the series converges, its sum is

$$\sum_{n=0}^{+\infty} (-2x)^n = \frac{1}{1 - (-2x)} = \frac{1}{1 + 2x}$$

6. Express the function $x \mapsto \ln(1+2x)$ as a power series and find its radius of convergence.

Let us integrate the power series of previous question: we get

$$\int_0^x \frac{1}{1+2t} \, \mathrm{d}t = \frac{1}{2} \ln(1+2x) = \sum_{n=0}^{+\infty} (-2)^n \, \frac{x^{n+1}}{n+1}$$

and the radius of convergence is the same as at previous question. It results that

$$\ln(1+2x) = \sum_{n=0}^{+\infty} 2 \times (-2)^n \, \frac{x^{n+1}}{n+1} = -\sum_{n=0}^{+\infty} (-2)^{n+1} \, \frac{x^{n+1}}{n+1}$$

The radius of convergence is $\frac{1}{2}$.

7. Express the function $x \mapsto \frac{x^2}{(1+2x)^2}$ as a power series and find its radius of convergence.

Let us differentiate the power series of question 5. We get

$$\frac{-2}{(1+2x)^2} = \sum_{n=1}^{+\infty} (-2)^n n \, x^{n-1} \qquad \text{and the radius of convergence is } R_2 = \frac{1}{2}$$

Hence,

$$\frac{1}{(1+2x)^2} = \sum_{n=1}^{+\infty} (-2)^{n-1} n \, x^{n-1} \Longrightarrow \frac{x^2}{(1+2x)^2} = \sum_{n=1}^{+\infty} (-2)^{n-1} n \, x^{n+1}$$

Exercise 7: infinite probabilities (4 points)

Consider a random variable X admitting a generating function of the form $G_X(t) = a e^{2t}$, where $a \in \mathbb{R}$.

- 1. What is the value of a?
 - $G_X(1) = 1 \Longrightarrow a e^2 = 1 \Longrightarrow a = e^{-2}$
- 2. By expressing $G_X(t)$ as a power series, find the distribution of X.

Let us express $G_X(t)$ as a power series:

$$G_X(t) = e^{-2} \sum_{n=0}^{+\infty} \frac{(2t)^n}{n!} = \sum_{n=0}^{+\infty} e^{-2} \frac{2^n}{n!} t^n$$

Thus,

$$X(\Omega) = \mathbb{N}$$
 and $\forall n \in \mathbb{N}, P(X=n) = e^{-2} \frac{2^n}{n!}$

3. Compute the expectation and the variance of X.

For all
$$t \in \mathbb{R}$$
, $G_X'(t) = e^{-2} \times 2e^{2t}$ and $G_X''(t) = e^{-2} \times 4e^{2t}$

- Thus, $E(X) = G_X'(1) = e^{-2} \times 2e^2 = 2.$
- And $\operatorname{Var}(X) = G_X''(1) + \operatorname{E}(X) \operatorname{E}^2(X) = 4 + 2 4 = 2.$