Midterm exam 1

Duration: three hours

Documents and calculators not allowed

Exercise 1 (2 points)

1. Determine the Taylor expansion around 0 at the order 3 of $\cos(x)^{\sin(x)}$.

2. Determine
$$\lim_{x\to 0} \frac{\ln(1+\sin(x)) - \sin(\ln(1+x))}{x^2\sin(x^2)}$$
.

Exercise 2 (4,5 points)

1. Using the d'Alembert rule, determine the nature of $\sum \frac{2n}{n+2^n}$

2. Using the d'Alembert rule, determine the nature of $\sum \frac{1+n^2}{n!}$.

3. Determine the nature of $\sum \frac{\sin(\sqrt{n}+1)}{n^2}$.

4. Let $\alpha \in \mathbb{R}$. Determine, with precise and detailed arguments, the nature of $\sum \frac{(-1)^n}{n^{\alpha}}$.

Exercise 3 (8 points)

For all $n \in \mathbb{N}^*$, we set

$$a_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

1. a. What is the nature of the series $\sum \frac{1}{\sqrt{n}}$?

b. What is the limit of a_n when n tends to $+\infty$?

2. We consider the sequence $(u_n)_{n\geqslant 2}$ defined for all $n\geqslant 2$ by

$$u_n = \frac{(-1)^n}{(-1)^n + a_n}$$

a. Show that for all $n \ge 2$,

$$u_n = \frac{(-1)^n}{a_n} - \frac{1}{a_n^2} + o\left(\frac{1}{a_n^2}\right)$$

b. Show that the sequence $\left(\frac{1}{a_n}\right)_{n\in\mathbb{N}^*}$ is decreasing and converges to 0.

c. Deduce the nature of the series $\sum \frac{(-1)^n}{a_n}$.

d. Show by induction that, for all $n \in \mathbb{N}^*$,

$$2\sqrt{n+1}-2 \leqslant a_n \leqslant 2\sqrt{n}-1$$

N.B.: you can use the fact, without proving it, that for all $n \in \mathbb{N}^*$, $2\sqrt{n+2} - 2\sqrt{n+1} \leqslant \frac{1}{\sqrt{n+1}}$ and $2\sqrt{n+1} - 2\sqrt{n} \geqslant \frac{1}{\sqrt{n+1}}$.

- e. Deduce the limit of $\frac{a_n}{2\sqrt{n}}$ when n tends to $+\infty$. Give an equivalent of a_n in $+\infty$.
- f. Deduce the nature of the series $\sum \left(-\frac{1}{a_n^2} + o\left(\frac{1}{a_n^2}\right)\right)$.
- 3. Determine the nature of the series $\sum u_n$.

Exercise 4 (4,5 points)

We consider the sequence $(u_n)_{n\geqslant 2}$ such that

$$u_n = \ln\left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+1}}\right)$$

For $n \geqslant 2$, we set

$$v_n = \frac{\sqrt{n}}{\sqrt{n+1}}$$

1. Show that

$$u_n = \ln(v_n) + \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$$

2. Determine $(\alpha, \beta) \in \mathbb{R}^2$ such that

$$v_n = 1 - \frac{\alpha}{n} + \frac{\beta}{n^2} + o\left(\frac{1}{n^2}\right)$$

3. Determine $\gamma \in \mathbb{R}$ such that

$$\ln(v_n) = -\frac{\alpha}{n} + \frac{\gamma}{n^2} + o\left(\frac{1}{n^2}\right)$$

4. Show that

$$u_n = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \frac{(-1)^n}{3n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$

5. Deduce the nature of $\sum u_n$.

N.B.: your redaction at this last question is expected to be particularly precise and rigorous.

Exercise 5 (2 points)

1. Let (u_n) be a real sequence. Show that : $\sum (u_{n+1} - u_n)$ convergent $\iff (u_n)$ convergent.

2. Let $(a_n)_{n\in\mathbb{N}}$ be a real sequence with strictly positive terms and $u_0\in\mathbb{R}_+^*$. We define $(u_n)_{n\in\mathbb{N}}$ by

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + \frac{a_n}{u_n}$$

Show that : (u_n) convergent $\iff \sum a_n$ convergent.

N.B.: you may use the fact (without proving it) that (u_n) is strictly positive ans strictly increasing.