Correction of Midterm exam 1

Exercise 1 (2 points)

1. $\cos(x)^{\sin(x)} = e^{\sin(x)\ln(\cos(x))}$

 But

$$\sin(x)\ln(\cos(x)) = \left(x - \frac{x^3}{6} + o(x^3)\right)\ln\left(1 - \frac{x^2}{2} + o(x^3)\right) = \left(x - \frac{x^3}{6} + o(x^3)\right)\left(-\frac{x^2}{2} + o(x^3)\right)$$

so
$$\cos(x)^{\sin(x)} = e^{-x^3/2 + o(x^3)} = 1 - \frac{x^3}{2} + o(x^3).$$

2.
$$\ln(1+\sin(x)) = \ln\left(1+x-\frac{x^3}{6}+o(x^4)\right) = \left(x-\frac{x^3}{6}\right) - \frac{1}{2}\left(x-\frac{x^3}{6}\right)^2 + \frac{1}{3}\left(x-\frac{x^3}{6}\right)^3 - \frac{1}{4}\left(x-\frac{x^3}{6}\right)^4 + o(x^4)$$
so
$$\ln(1+\sin(x)) = x - \frac{x^3}{6} - \frac{1}{2}\left(x^2 - \frac{x^4}{3}\right) + \frac{1}{3}x^3 - \frac{1}{4}x^4 + o(x^4)$$

Thus

$$\ln(1+\sin(x)) = x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^4}{12} + o(x^4)$$

$$\sin(\ln(1+x)) = \sin\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)\right) = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right) - \frac{1}{6}\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right)^3 + o(x^4)$$
so
$$\sin(\ln(1+x)) = x - \frac{x^2}{2} + \frac{x^3}{6} + o(x^4)$$

Thus

$$\ln(1+\sin(x)) - \sin(\ln(1+x)) = -\frac{x^4}{12} + o(x^4)$$

and

$$\ln(1+\sin(x)) - \sin(\ln(1+x)) \approx -\frac{x^4}{12}$$

On the other hand, $x^2 \sin(x^2) \sim x^4$. Thus

$$\frac{\ln(1+\sin(x)) - \sin(\ln(1+x))}{x^2 \sin(x^2)} \sim \frac{-\frac{x^4}{12}}{x^4} = -\frac{1}{12}$$

and

$$\lim_{x \to 0} \left\lceil \frac{\ln(1+\sin(x)) - \sin(\ln(1+x))}{x^2 \sin(x^2)} \right\rceil = -\frac{1}{12}$$

Exercice 2 (4,5 points)

1. Let's call
$$u_n = \frac{2n}{n+2^n}$$
.

$$\begin{array}{rcl} \frac{u_{n+1}}{u_n} & = & \frac{2n+2}{n+1+2^{n+1}} \times \frac{n+2^n}{2n} \\ \\ & = & \frac{n+1}{n} \times \frac{2^n}{2^{n+1}} \times \frac{\frac{n}{2^n}+1}{\frac{n+1}{2n+1}+1} \xrightarrow[n \to +\infty]{} \frac{1}{2} \end{array}$$

But $\frac{1}{2} < 1$ so, via the rule of d'Alembert, $\sum u_n$ is convergent.

2. Let's call
$$v_n = \frac{1+n^2}{n!}$$
.

$$\frac{v_{n+1}}{v_n} = \frac{1 + (n+1)^2}{(n+1)!} \times \frac{n!}{1+n^2} = \frac{1}{n+1} \times \frac{n^2 + 2n + 2}{n^2 + 1} \xrightarrow[n \to +\infty]{} 0.$$

But 0 < 1 so $\sum v_n$ is convergent.

- 3. $\left| \frac{\sin(\sqrt{n}+1)}{n^2} \right| \leqslant \frac{1}{n^2}$ and $\sum \frac{1}{n^2}$ is convergent so $\sum \frac{\sin(\sqrt{n}+1)}{n^2}$ is absolutely convergent. Therefore it is convergent.
- 4. If $\alpha \leq 0$, the term of the series does not tend to 0 so $\sum \frac{(-1)^n}{n^{\alpha}}$ is divergent.

If $\alpha > 1$, $\sum \frac{(-1)^n}{n^{\alpha}}$ is absolutely convergent so it is convergent.

If $0 < \alpha \le 1$, the series $\sum \frac{(-1)^n}{n^{\alpha}}$ is alternating and satisfies the conditions of the alternating series criterion: the sequence $\left(\frac{1}{n^{\alpha}}\right)$ is decreasing and tends to 0 so $\sum \frac{(-1)^n}{n^{\alpha}}$ is convergent.

Exercise 3 (8 points)

- 1. a. $\sum \frac{1}{\sqrt{n}}$ is a divergent Riemann series because $\frac{1}{2} < 1$.
 - b. (a_n) is the sequence of partial sums associated to the series $\sum \frac{1}{\sqrt{n}}$. It is increasing because the series has positive terms. Via the previous question, $\sum \frac{1}{\sqrt{n}}$ is divergent so a_n diverges to $+\infty$ when n tends to $+\infty$.
- 2. a. We have

$$u_n = \frac{(-1)^n}{a_n} \left(1 + \frac{(-1)^n}{a_n} \right)^{-1}$$

$$= \frac{(-1)^n}{a_n} \left(1 - \frac{(-1)^n}{a_n} + o\left(\frac{1}{a_n}\right) \right)$$

$$= \frac{(-1)^n}{a_n} - \frac{1}{a_n^2} + o\left(\frac{1}{a_n^2}\right)$$

b.
$$\frac{1}{a_{n+1}} - \frac{1}{a_n} = \frac{a_n - a_{n+1}}{a_n a_{n+1}}$$

but

$$a_n - a_{n+1} = -\frac{1}{\sqrt{n+1}} < 0$$

so $\frac{1}{a_{n+1}} - \frac{1}{a_n} < 0$. Thus, $\left(\frac{1}{a_n}\right)_{n \in \mathbb{N}^*}$ is decreasing and, according to 1.b, converges to 0.

- c. The series $\sum \frac{(-1)^n}{a_n}$ is convergent according the alternating series criterion.
- d. We have

$$2\sqrt{2} - 2 \leqslant a_1 = 1 \leqslant 2\sqrt{1} - 1 = 1$$

so the property is true for n = 1. Suppose now that it is true for a given value $n \ge 1$. Then, since

$$a_{n+1} = a_n + \frac{1}{\sqrt{n+1}}$$

we have, via the induction hypothesis and the remark in N.B.,

$$2\sqrt{n+1} - 2 + 2\sqrt{n+2} - 2\sqrt{n+1} \leqslant a_{n+1} \leqslant 2\sqrt{n} - 1 + 2\sqrt{n+1} - 2\sqrt{n}$$

that is

$$2\sqrt{n+2} - 2 \leqslant a_{n+1} \leqslant 2\sqrt{n+1} - 1$$

Finally, the property is also true for n+1.

e. Referring to the previous question, we have

$$\frac{\sqrt{n+1}-1}{\sqrt{n}} \leqslant \frac{a_n}{2\sqrt{n}} \leqslant \frac{2\sqrt{n}-1}{2\sqrt{n}}$$

which means that

$$\sqrt{1+\frac{1}{n}}-\frac{1}{\sqrt{n}}\leqslant \frac{a_n}{2\sqrt{n}}\leqslant 1-\frac{1}{2\sqrt{n}}$$

Using the squeeze theorem, we deduce that $\frac{a_n}{2\sqrt{n}} \longrightarrow 1$. Hence

$$a_n \underset{+\infty}{\sim} 2\sqrt{n}$$

f. According to the previous question,

$$-\frac{1}{a_n^2} + o\left(\frac{1}{a_n^2}\right) \underset{+\infty}{\sim} -\frac{1}{a_n^2} \underset{+\infty}{\sim} -\frac{1}{4n}$$

but
$$\sum \frac{1}{n}$$
 is divergent so $\sum \left(-\frac{1}{a_n^2} + o\left(\frac{1}{a_n^2}\right)\right)$ is divergent.

3. $\sum u_n$ is the sum of a convergent series and a divergent one. It is therefore divergent.

Exercise 4 (4,5 points)

1.
$$u_n = \ln\left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+1}}\right) = \ln\left(\frac{\sqrt{n}}{\sqrt{n+1}} + \frac{(-1)^n}{\sqrt{n+1}}\right) = \ln\left(\frac{\sqrt{n}}{\sqrt{n+1}}\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)\right)$$

$$= \ln\left(\frac{\sqrt{n}}{\sqrt{n+1}}\right) + \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$$

$$= \ln(v_n) + \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$$

2.
$$v_n = \sqrt{\frac{n}{n+1}} = \left(1 + \frac{1}{n}\right)^{-\frac{1}{2}}$$
$$= 1 - \frac{1}{2n} + \frac{3}{8n^2} + o\left(\frac{1}{n^2}\right)$$
So $\alpha = \frac{1}{2}$ and $\beta = \frac{3}{8}$.

3.
$$\ln(v_n) = \ln\left(1 - \frac{1}{2n} + \frac{3}{8n^2} + o\left(\frac{1}{n^2}\right)\right) = -\frac{1}{2n} + \frac{3}{8n^2} - \frac{1}{2}\left(\frac{1}{2n} - \frac{3}{8n^2}\right)^2 + o\left(\frac{1}{n^2}\right)$$

$$= -\frac{1}{2n} + \frac{3}{8n^2} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)$$

$$= -\frac{1}{2n} + \frac{1}{4n^2} + o\left(\frac{1}{n^2}\right)$$
So $\gamma = \frac{1}{4}$.

4.
$$u_n = \ln(v_n) + \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) = -\frac{1}{2n} + \frac{1}{4n^2} + o\left(\frac{1}{n^2}\right) + \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$$

But

$$\ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) = \frac{(-1)^n}{\sqrt{n}} - \frac{(-1)^{2n}}{2n} + \frac{(-1)^{3n}}{3n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$
$$= \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + \frac{(-1)^n}{3n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$

Furthermore

$$\frac{1}{4n^2} + o\left(\frac{1}{n^2}\right) = o\left(\frac{1}{n\sqrt{n}}\right)$$

Finally

$$u_n = -\frac{1}{2n} + \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + \frac{(-1)^n}{3n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$
$$= \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \frac{(-1)^n}{3n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$

5.
$$u_n = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \frac{(-1)^n}{3n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$

But $\sum \frac{(-1)^n}{\sqrt{n}}$ is alternating and convergent, because $\left(\left|\frac{(-1)^n}{\sqrt{n}}\right|\right)$ is decreasing and tends to 0.

Let's call

$$w_n = \frac{(-1)^n}{3n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$

Then

$$|w_n| \underset{+\infty}{\sim} \frac{1}{3n\sqrt{n}} = \frac{1}{3n^{\frac{3}{2}}}$$

and $\sum \frac{1}{n^{\frac{3}{2}}}$ is convergent. So $\sum w_n$ is absolutely convergent and is therefore convergent.

On the other hand, $\sum \frac{1}{n}$ is divergent.

Finally $\sum u_n$, being the sum of a divergent series and a convergent one, is divergent.

Exercise 5 (2 points)

1.
$$\sum (u_{n+1} - u_n)$$
 convergent $\iff \left(\sum_{k=0}^n (u_{k+1} - u_k)\right)$ convergent $\iff (u_n - u_0)$ convergent so

$$\sum (u_{n+1} - u_n)$$
 convergent $\iff (u_n) = (u_n - u_0 + u_0)$ convergent

2.

 $\overline{\text{Suppose that }} \sum a_n$ is convergent. Then

$$\forall n \in \mathbb{N}, \ 0 < u_{n+1} - u_n = \frac{a_n}{u_n} < \frac{a_n}{u_0}$$

so $\sum (u_{n+1} - u_n)$ is convergent by comparaison and, according to the question 1, (u_n) is convergent.

 \implies

 $\overline{\text{Supp}}$ ose now that (u_n) converges to ℓ . Since (u_n) is strictly increasing and strictly positive, $\ell > 0$. Furtheremore

$$0 < u_{n+1} - u_n = \frac{a_n}{u_n} \underset{+\infty}{\sim} \frac{a_n}{\ell}$$

which implies that

$$a_n \underset{+\infty}{\sim} \ell(u_{n+1} - u_n)$$

But (u_n) is convergent so, according to the question 1, $\sum (u_{n+1} - u_n)$ is convergent.

Thus, $\sum a_n$ is convergent by comparaison.