NAME :FIRST NAME :

GR<u>OUP</u>:.....

Mid-term exam: Electronics

Calculators and documents are not allowed. The number of points per question is indicative. Answers to be written on this document only.

Exercise 1. Lecture questions (without negative points – 5 points)

- Q1. Doping decreases the conductivity of the semi-conductor
 - a- True

- b- False
- Q2. We use a piece of silicium with 4 electrons of the valence band. If we dope it with the phosphor which has 5 electrons of the valence band, which type of doping we obtain:
 - a- P doping

NP doping

b- N doping

- d- No doping
- Q3. With an electric excitation, an insulator material can become a semi-conductor:
 - a- True

c- Only if the material electrons of the condictivity

b- False

- band
- Q4. We consider the following circuit, where E>the threshold voltage. Choose the correct answer:

a- The circuit is closed

- b- The circuit is open
- Q5. Which of these characteristics corresponds to the one of the 'ideal' model?

Q6. Which model allows to represent precisely the diode:

a- The ideal model

c- The real model

b- The threshold model

d- The three models are equivalent

Q7. $I_D = I_S(e^{\frac{V_D}{nV_T}} - 1)$ reprents the courant I_D flowing through a diode function of V_D the voltage across it. Passive sign convention is used. I_S corresponds to the reverse current which is:

a- Very high (~10 Amperes)

b- Very low (~10-9 Amperes)

Q8. An intrinsic semi-conductor is :

- a- Disorderly cristal
- b- A cristal doped with pentalent atoms
- c- A christal doped with trivalent atoms
- d- A pure cristal

Q9. Using the real model, when the diode is OFF, it is replaced by which electrical circuit? (A: Anode and K: Cathode).

Q10. We consider the following circuit:

What is th voltage U if the switch K is closed?

- a- U = 0
- b- $U = \frac{E}{2}$
- c-U=E
- d-U=-E

Exercise 2. SUP Review (5 points)

We consider the following circuit.

Using your preferred method, give the expression of the voltage U. Express your result as a fraction (not as a 'fraction of fractions'!)

Exercise 3. Forward/reverse bias (5 points)

We consider the following circuit.

We model the diode using the model with threshold voltage with $V_0 = 0.7V$.

1. If $R=1k\Omega$, $I_0=10mA$ and E=5V, determine the state of the diode and draw the equivalent circuit. Give then the intensity of the current I_R going through the resistor.

2. If $R=10\Omega$, $I_0=10 mA$ and E=5 V, determine the state of the diode. Give then the intensity of the current I_R going through the resistor.

Exercise 4. Transfer characteristic (6 points)

We consider the following circuit.

We want to determine and plot u(t). We give :

$$e(t)=E_0\sin(\omega t)$$
 , $R=100~\Omega$ with $E_0=30V$ et $\omega=2\pi\times50 rad/s$

The diodes are assumed to be 'ideal'.

1.	Show that the 2 diodes can be simultaneously ON. Express $u(t)$ and precise for which value
	of $e(t)$.

2.	Show that the 2 diodes can be simultaneously OFF. Express $u(t)$ and precise for which value of $e(t)$.	16

3. Plot the transfer characteristic of this circuit (u = f(e)).

4. Plot u(t).

