Algorithmics
 Correction Midterm \#3 (C3)

Undergraduate $2^{\text {nd }}$ YEAR - S3 - Epita

9 November 2021-9:30

Solution 1 (Graphs and components. . . -5 points)

Figure 1: Digraph G

Figure 2: Spanning forest of the DFS (from 3 with vertices in increasing order)

1. The indegree array of G 's vertices is as follows :

	1	2	3	4	5	6	7	8	9	
indegrees	1	2	1	2	6	2	1	2	1	

2. The preorder traversal vertices of the graph G starting from the vertex 3 are :
$3,1,2,5,6,4,8,9,7$
3. No the graph G is not strongly connected.
4. The graph has 2 strongly connected components.
5. There are no vertices of degree equal to 0 .

Solution 2 (Large Family - 4 points)

Specifications:

The function morechildren (T) checks if each internal node of the tree T (TreeAsBin) has strictly more children than its parent.

```
def morechildren(B, nbc=0): # nbc = child number of B's parent
    k = 0
    C = B.child
    while C:
        k += 1
        C = C.sibling
        if B.child and k <= nbc:
            return False
        else:
        C = B.child
        while C and morechildren(C, k):
            C = C.sibling
        return C == None
```

Solution 3 (Decreasing - 4 points)

Specifications:

decrease (B) returns the list of the keys of the B -tree B in decreasing order.

```
def __decrease(B, L):
    if B.children == []:
        for i in range(B.nbkeys-1, -1, -1):
            L. append (B.keys [i])
    else:
        for i in range(B.nbkeys, 0, -1):
            __decrease(B.children[i], L)
            L.append(B.keys[i-1])
            __decrease(B.children[0], L)
def decrease(B):
    L = []
    if B:
            __decrease(B, L)
    return L
```

Solution 4 (B-tree: insertion and deletion - 3 points)

1. Tree B1 after the insertions of the values $11,32,20$, using the "in going down" principle:

Figure 3: Après insertions
2. Tree B2 after the deletion of the value 15 , using the "in going down" principle:

Figure 4: Après suppression

Solution 5 (What? - 4 points)

1.

(a) mystery (B2, 0, 92)	Returned result	Call number
(b) mystery (B3, 0, 20)	False	8
(c) mystery (B3, 1, 99)	False	6

2. The function mystery ($B, \mathrm{a}, \mathrm{b}$) tests whether B is "well-ordered" i.e. is a search tree, with its values in the interval $[a, b]$.
