
Algorithmics
Correction Midterm #3 (C3)

Undergraduate 2nd year - S3 – Epita

9 November 2021 - 9 : 30

Solution 1 (Graphs and components. . . – 5 points)

Figure 1: Digraph G

Figure 2: Spanning forest of the DFS (from 3 with vertices in
increasing order)

1. The indegree array of G’s vertices is as follows :
1 2 3 4 5 6 7 8 9

indegrees 1 2 1 2 6 2 1 2 1

2. The preorder traversal vertices of the graph G starting from the vertex 3 are :

3, 1, 2, 5, 6, 4, 8, 9, 7

3. No the graph G is not strongly connected.

4. The graph has 2 strongly connected components.

5. There are no vertices of degree equal to 0.

1



Algorithmics
Correction Midterm #3 (C3) –

Undergraduate 2nd year - S3
Epita

Solution 2 (Large Family – 4 points)

Specifications:
The function morechildren(T) checks if each internal node of the tree T (TreeAsBin) has strictly
more children than its parent.

1 def morechildren(B, nbc =0): # nbc = c h i l d number o f B ’ s parent
2 k = 0
3 C = B.child
4 while C:
5 k += 1
6 C = C.sibling
7 if B.child and k <= nbc:
8 return False
9 else:

10 C = B.child
11 while C and morechildren(C, k):
12 C = C.sibling
13 return C == None

Solution 3 (Decreasing – 4 points)

Specifications:
decrease(B) returns the list of the keys of the B-tree B in decreasing order.

1 def __decrease(B, L):
2 if B.children == []:
3 for i in range(B.nbkeys -1, -1, -1):
4 L.append(B.keys[i])
5 else:
6 for i in range(B.nbkeys , 0, -1):
7 __decrease(B.children[i], L)
8 L.append(B.keys[i-1])
9 __decrease(B.children [0], L)

10

11 def decrease(B):
12 L = []
13 if B:
14 __decrease(B, L)
15 return L

2



Algorithmics
Correction Midterm #3 (C3) –

Undergraduate 2nd year - S3
Epita

Solution 4 (B-tree: insertion and deletion – 3 points)

1. Tree B1 after the insertions of the values 11, 32, 20, using the "in going down" principle:

Figure 3: Après insertions

2. Tree B2 after the deletion of the value 15, using the "in going down" principle:

Figure 4: Après suppression

Solution 5 (What? – 4 points)

1.

Returned result Call number

(a) mystery(B2, 0, 92) True 8

(b) mystery(B3, 0, 20) False 6

(c) mystery(B3, 1, 99) False 8

2. The function mystery(B, a, b) tests whether B is "well-ordered" i.e. is a search tree, with its
values in the interval [a, b].

3


