Last name	
First name	
Group	
Tutorial Teacher	

Grade

Algorithmics
Undergraduate $2^{\text {nd }}$ year - S3
Midterm \#3 (C3)
9 November 2020-13:30
Answer Sheets

1	
2	
3	
4	
5	

Answers 1 (Some different results - 5 points)

Draw the hash tables corresponding to the different collision resolution methods:

1. Coalesced hashing:

2. Linear probing:

3. Double hashing:

Answers 2 (Find the sum -4 points)

Specifications:

The function find_sum (B, sum) tests if there exists a branch in the tree B (TreeAsBin) such that the sum of its values (integers) is equal to sum.

Answers 3 (Maximum Gap - 4 points)

Specifications: The function maxgap (B) computes the maximum gap of the B-tree B.

Answers 4 (What? - 4 points)

1. Application results:

what $\left(B_{3}, 2\right)$	what $\left(B_{3}, 7\right)$	what $\left(B_{3}, 18\right)$	what $\left(B_{3}, 39\right)$	what $\left(B_{3}, 41\right)$	what $\left(B_{3}, 99\right)$

2. Let B be a non empty B-tree and x an integer. What does what (B, x) return?

Answers 5 (B-tree: insertion and deletion - 3 points)

1. Tree after the insertion of the value 39 (you can tilt the sheet and draw the tree in landscape format):
2. Tree after the deletion of the value 72 (you can tilt the sheet and draw the tree in landscape format):
