Last name				
First name		Grade		
Group		Grade		
	Algorithmics		1	

1	
2	
3	
4	
5	

Answers 1 (Hashing - 3 points)

Answers 2 (Draw to win -2 points)

1. Draw the digraph ${\tt G}:$

Answers 3 (Equality – 5 points)

Specifications:	The function	same(T,	B) tes	sts whet	her T , a	general	tree in	'classical"	representation,
and B , a ge	eneral tree in	first child ·	- right	sibling	represen	tation, a	are iden	tical.	

Answers 4 (B-tree measures - 4 points)

Specifications:

occupation(B) returns average number of keys per node of the B-tree B.

Answers 5 (B-trees: Minimum deletion - 6 points)

- 1. Degree =
- 2. Tree after deletion of 3:

2. Specifications:

The function $_delmin(B)$ deletes and returns the minimum value of the non empty B-tree B.