Algorithmics
Correction Midterm #3 (C3)

UNDERGRADUATE 2" YEAR - S3 — EPITA

5 November 2019 - 9 : 30

Solution 1 (Axes and graphs... — 5 points)

1.
2.

The hashing with separate chaining and the coalesced hashing.
The collision resolution method with which secondary collisions appear is the coalesced hashing.

A secondary collision is a collision without a coincidence of hash values between an x and a y, with
x different from y.

. The order of a digraph is its number of vertices.

A zero degree vertex is called isolated vertex.
The vertices of G which have an outdegree equal to 0 are: {6,9}

The vertices of G which have an indegree equal to 1 are: {2,7,8}

Solution 2 (Average Arity of a General Tree — 5 points)

Specifications:

The function averageArity(T') returns the average arity of the a general tree T(TreeAsBin).

"therity (B) return (nb links, nb internal nodes)

nnn

;5 def

; def

arity(B): # with "classical” traversal
if B.child == None:
return (0, 0)
else:
(links, nodes) = (0, 1)
child = B.child
while child:
(lc, nc) = arity(child)
links += 1lc + 1
nodes += nc
child = child.sibling
return (links, nodes)

arity(B): # "binary" traversal
if B.child == None:
(links, nodes) = (0, 0)

else:

(lc, nc) = arity(B.child)

(links, nodes) = (lc + 1, nc + 1)
if B.sibling != None:

(1s, ns) = arity(B.sibling)
links += 1s + 1
nodes += ns

return (links, nodes)

def average_arity(B):
(links, nodes) = arity(B)
return links / nodes if nodes else 0




Algorithmics UNDERGRADUATE 2"¢ YEAR - S3
CORRECTION MIDTERM #3 (C3) — EpiTA

Solution 8 (B-trees: Insertions — 8 points)

1. Insertion of keys 36 and 42:

mer insertion of 36

(8]12) (1s]19]20) (24]25) (30 ) (36]38) (45]4s8)

After insertion of 42

| /@

K (s]12) (18]19]20) (24]25) (30 ) (36]38) (4a2]as]as)

2. Specifications:
The function __insert(B, z) inserts the key x in the B-tree B, unless x is already in the

tree. B is nonempty, and its root is not a full node (not a 2¢-node). It returns a boolean that
tells if the insertion occurred.

def __insert (B, x):

i = search_pos(B.keys, x)

if i < B.nbkeys and B.keys[i] == x:
return False

elif B.children == []:

B.keys.insert (i, x)
return True
else:
if B.children[i].nbkeys == 2 * B.degree - 1:
if B.children[i].keys[B.degree-1] == x:
return False
split (B, 1)
if x > B.keys[i]:
i += 1
return __insert(B.children([i], x)

Solution 4 (B-Trees and Mystery — 2 points)

nodes = [[22], [15], [27, 41], [8, 12], [18, 19, 20], [24, 25], [30, 35, 38], [45, 48]]

degree = 2



