Last name			
First name			
Group			
Tutorial Teacher	G	rade	
ч			

Algorithmics
Undergraduate 2^{nd} year - S3
$Midterm \ \#3 \ (C3)$
November 2019
Answer Sheets

1	
2	
3	
4	

Answers 1 (Axes and graphs... - 5 points)

1. Give two indirect methods of hashing:

2. The collision resolution method with which secondary collisions appear is:

3. A secondary collision is:

4. The order of a digraph is:

5. A zero degree vertex is called:

6. If they exist, the vertices of ${\tt G}$ which have an outdegree equal to 0 are:

7. If they exist, the vertices of ${\tt G}$ which have an indegree equal to 1 are:

Answers 2 (Average Arity of a General Tree – 5 points)

Specifications:

The function averageArity(T) returns the average arity of the general tree T (TreeAsBin) if size(T) > 1, otherwise 0.

Answers 3 (B-trees: Insertions – 8 points)

1. Insertion of keys 36 and 42:

After insertion of 36

After insertion of 42

2. Specifications:

The function $\texttt{insert_rec}(x, B)$ inserts the key x in the B-tree B, unless x is already in the tree. B is nonempty, and its root is not a full node (not a 2t-node). It returns a boolean that tells if the insertion occurred.

(Function to write next page...)

															1	1		
		-	-															
																		<u> </u>
				1	1									1				

Answers 4 (B-Trees and Mystery – 2 points)

Parameters given to build:

• nodes =

• degree =