Algorithmics
Correction Midterm #3 (C3)

UNDERGRADUATE 2" YEAR - S3 — EPITA

29 October 2018 - 13 : 30

Solution 1 (Hashing Strongly Connected — 4 points)

1. The linear probing or the double hashing.

2. The hashing with separate chaining. Le hachage avec chainage séparé. the elements are chained
together outside the hash table.

3. The search by interval is incompatible with the hashing due to the dispersion of thes elements.
4. The secondary collisions appear with the coalesced hashing.

5. The directed graph G=<S,A> defined by:

s={1,2,3,4,5,6,7,8,9,10}
et A={(1,2),(1,6),(1,7),(2,3),(2,6),(3,1),(3,5),(4,3),(4,8),(4,9),(4,10),
(5,1),(7,6),(8,5),(8,10),(10,9)}

is that of figure 1

{d) (10)
5 2

Figure 1: Directed graph.

6. The Indegree table is as follows:

1 2 3 4 5 6
InDegree [2 [1[2]0[2]3]

1

Algorithmics UNDERGRADUATE 2"? YEAR - S3

CORRECTION MIDTERM #3 (C3) —

EpiTA

Solution 2 (Equality — 5 points)

Specifications:

The function same (7', B) tests whether T', a general tree in "classical" representation, and B, a

general tree in first child - right sibling representation, are identical.

with return statement in loop
def equal(T, B):
if T.key !'= B.key:
return False
else:
Bchild = B.child
for Tchild in T.children:
if Bchild == None or not(equal(Tchild, Bchild)):
return False
Bchild = Bchild.sibling
return Bchild == None

s # without return in the loop

def equal2(T, B):
if T.key != B.key:
return False

else:
Bchild = B.child
i=0
while i < T.nbChildren and (Bchild and equal2(T.children[il,
i+=1
Bchild = Bchild.sibling
return i == T.nbChildren and Bchild == None

Bchild)):

Solution 3 (Levels — 4 points)

Specifications:
The function levels(7") builds a list of the keys of T" level by level.

def levels(T):
q = queue.Queue ()
q.enqueue (T)
q2 = queue.Queue ()
Levels = []
L =[]
while not q.isempty ():
T = qg.dequeue ()
L.append(T.key)
C = T.child
while C:
q2.enqueue (C)
C = C.sibling
if q.isempty():
(g9, 92) = (q2, q)
Levels.append (L)
L =1

return Levels

Algorithmics
CORRECTION MIDTERM #3 (C3) —

UNDERGRADUATE 2™¢ YEAR - S3

Solution 4

(Maximum Gap — 4 points)

Specifications:
The function maxgap(B) computes the maximum gap of the B-tree B.

optimised wersion: searching in all children is useless,

def

def

def

> # first and last child are sufficient!

__maxgap (B) :
gap = 0
for i in range (B.nbkeys-1):
gap = max(gap, B.keys[i+1] - B.keys[i])
if B.children:
gap = max(gap, __maxgap(B.children[0]))
gap = max(gap, __maxgap(B.children[-1]))
return gap

s # less optimized ...

__maxgap2(B) :
gap = 0
for i in range (B.nbkeys-1):
gap = max(gap, B.keys[i+1] - B.keys[i])

for child in B.children:
gap = max(gap, __maxgap2(child))
return gap

maxgap (B) :
return O if B is None else __maxgap (B)

Solution 5 (B-Trees and Mystery — 3 points)

1. Application results:

Returned result

Call number

(a) mystery(By, 1, 77) 29

10

(b) mystery(B;, 10, 30) 11

7

2. mystery(B, a, b) (a < b) computes the number of values of B in [a, b[.

