Physics S3 Final

The calculators and the extra-documents are not allowed. Answer only on the exam sheet.

Remember that, except if explicitly written in the questions, the notation $E_A(M)$ corresponds to the **norm** of the field $\overrightarrow{E_A}(M)$. But the angles are **oriented**.

We will use for convenience the usual constant $k = \frac{1}{4\pi\epsilon_0}$.

MCO(4 points-no negative points) Circle the right answer.

1- The electric field, generated by a pointlike charge q located at point O, at any point M reads:

- a) $\vec{E}(M) = k \frac{q}{QM^3} \overrightarrow{OM}$ b) $\vec{E}(M) = k \frac{q}{QM^2} \overrightarrow{OM}$ c) $\vec{E}(M) = k \frac{q}{QM} \overrightarrow{OM}$

2- A charge q is located in an electric field \vec{E} . The force \vec{F} , which is acting on the charge q, is given by:

- a) $\vec{F} = -a, \vec{E}$
- b) $\vec{F} = |q|, \vec{E}$
- c) $\vec{F} = q \cdot \vec{E}$

3- The electric field created by a positive charge located at O is:

- a) Convergent
- b) Well-defined at O
- c) Divergent

4- Which property satisfies the electrostatic field \vec{E} related to the potential V?

- a) $\vec{E} = \overline{grad}(V)$
- b) $\vec{E} = -\overrightarrow{arad}(V)$ c) $V = \overrightarrow{arad}(\vec{E})$

5- The area of a sphere of radius R is:

a) $4\pi R^3$

b) $\frac{4}{3}\pi R^2$

6- Let us consider a volume $\mathcal V$ containing a charge Q_{int} and delimited by a surface $\mathcal S$. The Gauss theorem reads for the field \vec{E} created by this geometry:

- a) $\oiint_{\mathcal{S}} \vec{E} \cdot \overrightarrow{dS} = \frac{Q_{int}}{\epsilon_0}$ b) $\oiint_{\mathcal{S}} \vec{E} \cdot \overrightarrow{dS} = Q_{int}$ c) $\oiint_{\mathcal{S}} E dS = \frac{Q_{int}}{\epsilon_0}$

7- We consider the limit case of an infinite cylinder of axis (Oz) and radius R. This cylinder is uniformly charged on its surface. What can be claimed at any M(r < R) inside the cylinder?

- a) $\vec{E}(M) = \vec{0}$
- b) $E(M) = E_0 \ln \left(\frac{r}{R}\right)$ c) $E(M) = E_0 R^2 / r^2$

8- At some point M the charge distribution has a symmetry plane \mathcal{P} . Therefore:

- a) $\vec{E}(M) \perp \mathcal{P}$
- b) $\vec{E}(M) \in \mathcal{P}$
- c) $\vec{E}(M) \notin \mathcal{P}$ vet $\vec{E}(M) \parallel \mathcal{P}$

Exercise 1

(4 points)

Two wires of finite length 2l with a lineic charge distribution λ are separated by a distance l, as sketched above. We assume that the axis (Oz) is a symmetry axis of the distribution.

1- a) Express the total electric field $\vec{E}(B)$ created at B by the wire containing A. Remember that the component along $\overrightarrow{u_x}$ of the elementary electric field created by a length element centered at P and located at an angle α can be written as: $dE_{p,x}(B) = \frac{k\lambda}{l} \cos \alpha \ d\alpha$. Deduce its norm.

I A. WING THE	en its potential	electrostan	energy	ε _A .		
b) Deduce th	e total potentia	ıl electrosta	atic energ	y of the two	wires.	
b) Deduce th	e total potentia	al electrosta	atic energ	y of the two	wires.	
b) Deduce th	e total potentia	ıl electrosta	atic energ	y of the two	wires.	
b) Deduce th	e total potentia	ıl electrosta	atic energ	y of the two	wires.	
b) Deduce th	e total potentia	al electrosta	atic energ	y of the two	wires.	

Exercise 2

(6 points)

Consider a volumic positive charge distribution ρ , uniformly distributed in a ball of center O and radius R, denoted by $\mathcal{B}(O,R)$.

1-	Study	the the	invarian	ces an	d the	symn	netries	of the	charge	distribution.	Deduce	the	form	of the
ele	etric fi	eld $ec{E}$	(M) at a	ny poi	nt M.				_					

2- By using the Gauss theorem, express the electric $\vec{E}(M)$, for M inside and outside the ball.

3- Deduce the electro	static potential V	(M) at any poin	t M. Draw the cu	rve representing	this function.
		· 484			

4- Consider now the following charge distribution:

For convenience, the former ball is sketched along a transversal cut. There is clearly a charge depletion (locally the density is vanishing). That one is located in a ball of radius R' and center O': $\mathcal{B}(O',R')$, with O' in the ball $\mathcal{B}(O,R)$ and R' < R (see above).

a) Using the question 2, deduce the expression	of the electric	field $\vec{E}'(M)$	generated b	y the ball
$\mathcal{B}(O',R')$, which is uniformly charged with a der	nsity $- ho$, at any	point $M(r')$	for $r' < R'$	et $r' > R'$.
Here $r' = O'M$.		_ , ,		

b) Deduce the total f	field $\vec{E}_{tot}(M)$ created at any point M by the total distribution sketched above.
c) Describe the shape	e of the field $\vec{E}_{tot}(M)$ for M in the cavity.
Exercise 3	(6 points)
In a cylindrical cond	luctor of axis (Oz) , of radius R and of length l, flows a current density \vec{J} given by
	\vec{t}_z . R and J_0 are constants. The conductivity of this conductor is denoted by σ .
current <i>I</i> in this cond	ent $I(r)$ through a section of radius r and of normal vector \vec{u}_z . Deduce the total ductor.
	·
ľ	

2- Recall the expression of the local Ohm law. Deduce the expression of the electric \vec{E} in this conductor.
3- We consider a uniform current $I_{tot} = \frac{\pi R^2 J_0}{2}$ in this conductor of section S and length l. Determine:
a) Its resistance R.
b) Its voltage U .
c) The expression of the mean speed of the electrons v_e —in terms of I_{tot} . The electrons density is denoted by n_e —and the current density is given by $\vec{J} = -e$. $\vec{v_e}$ —

Appendix: brief clarification and mathematical reminders

Exercise 1

The axes (0x) and (0z) are symmetries axes of the charge distribution.

Remember that the potential energy of a system associated to a force \vec{F} , conservative by definition, can be derived using the elementary work $\delta W(\vec{F}) = \vec{F} \cdot \vec{dl} = -d\mathcal{E}$.

Dans le cadre de cet exercice, en électrostatique, on utilisera $\overrightarrow{dl} = dl \overrightarrow{u_x}$ où dl correspond à une variation infinitésimale de la longueur l.

Exercise 2

In the specific case of a discreet charge distribution $\{q_i\}$, generating the corresponding electric fields $\{\overrightarrow{E_i}\}$, the total field can be seen as their superposition, i.e. $\overrightarrow{E_{tot}} = \sum_i \overrightarrow{E_i}$.

We have seen, in the course on the continuous charge distributions, that this formula can be generalized. For a volumic charge distribution ρ defined in \mathcal{V} , we know that:

$$\overrightarrow{E_{tot}}(M) = \iiint_{P \in \mathcal{V}} d\overrightarrow{E_P}(M)$$

It can be relevant to decompose this integral in a sum of two integrals. For instance, for a x-variable function f, defined and continuous on the interval [a, b], a < b:

$$\forall c \in [a, b], \int_{c}^{b} f(x)dx = \int_{a}^{b} f(x)dx - \int_{a}^{c} f(x)dx$$

For the total field $\overrightarrow{E_{tot}}$ (question 4-b)), express the result in terms of r, r', ρ and the vector $\overrightarrow{00'}$.

Exercise 3

To avoid misunderstanding and confusion with the resistance R, consider the radius of the conductor as being a_0 and the following current density $\vec{J}(r) = J_0 \left(1 - \frac{r^2}{a_z^2}\right) \vec{u}_z$.

Idem for the last part of the exercise, you can replace the radius in $I_{tot} = \frac{\pi a_0^2 J_0}{2}$ (keep the letter R for the resistance).