EDT	Γ⊿	1	5.
CC 1. I	_	•	

December 2017

IAME:	 FIRS'	TNAM

<u>iE</u> :...... <u>GROUP</u> ;......

Physics Final Exam n°1 (Duration: 1h30)

Calculators and extra-documents are not allowed.

Exercise 1 (7 points)

A ring of radius R and axis (Oz) is charged with a lineic constant positive density.

1- Use the symmetry rules to find the direction of the electric field which is generated by the ring at some point M on axis (Oz). Sketch $\vec{E}(M)$.

·		
•		
•		
·		
•		
•		
·		
•		
·		
•		
·		
•		
•		
·		
•		
·		
·		
·		
•		
·		
·		
·		
•		
·		
·		
•		
·		
·		
·		
·		
·		
·		
,		
·		
·		
·		
·		

2- Express the elementary field dE(M) generated at point M on axis (Oz) by a charge dQ, which is located at some length element \mathcal{U} of the ring. Deduce the component dEz in terms of R, k, λ , z, θ .

3- Show that the total field at point M can be written as: $E(z) = 2\pi .k\lambda R. \frac{z}{(z^2 + R^2)^{3/2}}$.

4- We now consider two rings, both of center O and axis (Oz), of radii R_1 and R_2 . The ring of radius R_1 is charged with a constant positive density λ , whereas the ring of radius R_2 is charged with a constant negative density $-\lambda$.

- a) Use the expression of question 3 to express the norms of the electric fields generated by the two rings at point M.
- b) Sketch these vectors on the drawing above.

c) Deduce the norm of the total field at point M.
Exercise 2: Gauss's theorem (7 points)
hollow sphere of center O and radius R carries a surfacic positive constant charge density σ .
- Use the symmetries and the invariances to determine the direction of the electric field \vec{E} and the dependence variables.
dependence variables.
2- a) Using Gauss's theorem, express the electric field in the domains $r < R$ and $r > R$.

b) Give the curve shape as a function of r. Describe it at $r = R$.
3- Deduce then the potential $V(r)$ for $(r < R)$ and $r > R$). (Don't determine the integration constants).
$gra\vec{d}_{Sph} = \left(\frac{\partial}{\partial r}; \frac{1}{r} \frac{\partial}{\partial \theta}; \frac{1}{r.\sin(\theta)} \frac{\partial}{\partial \varphi}\right)$

				a volumic con			
a) B	y using Gauss	s's theorem, re	cover the exp	oressions of the d depends on t	e electric field	l in the domain	ns r < R
1 .	r. Remonio	or that the fier	u is fadial and	u depends on t	iic raulai varia	ioie i.	
				,			
b) Gi	ve the shape o	f the curve E(r). Describe i	t roughly.			

c) Deduce the expressions of the electric potential V(r) in the domains r < R and r > R.
Exercise 3 The questions I and II are independent (6 points)
I- One considers a cylindrical conductor of axis (Oz) and radius R. Inside it flows a current I of varying
density $J(r) = J_0 \frac{r}{R}$, where J_0 and R are constant.
1- Express the total current I, which flows in the conductor, in terms of R and J_0 .
2- Compute it for $J_0 = 2.10^5$ A.m ⁻² and R = 2mm.

II- A conducting wire of length L = 1m and of section $S = 3.10^{-6} \, \text{m}^2$ is surrounded by a uniform electric field $E = 0.5 \text{ V.m}^{-1}$ Compute: 1) The voltage at conductor terminals. 2) The resistance R of the wire, by assuming that the current inside equals I = 5 A. 3) The resistivity ρ and the conductivity γ of this conductor. 4) The current density J. 5) The mean velocity of the electrons. Are given: $n_e = 10^{24} \, m^{-3}$ and $|q_e| = 1,6.10^{-19} \, C$