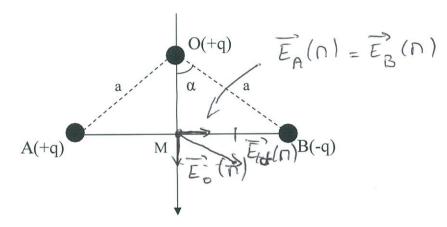
Partiel 1 de Physique (Durée:1h30)

Les calculatrices et les documents ne sont pas autorisés.

CORRIGE

Exercice 1 Distribution discrète (5 points)

On considère trois charges ponctuelles +q, +q et -q, placées respectivement aux points O, A et B. Le point M appartient à la médiatrice du segment AB. On donne OA = OB = a.



- 1-a) Représenter sur le schéma ci-dessus les vecteurs champs électrostatiques créés par les trois charges au point M, ainsi que le champ total $\vec{E}(M)$.
 - b) Exprimer les normes $E_O(M)$, $E_A(M)$ et $E_B(M)$, en fonction de k, q, a et α , ainsi que celle du vecteur champ total : E(M).

b) On peut ecure checkent que
$$E_A(\Pi) = E_B(\Pi)$$

et $E_A(\Pi) = \frac{1}{R} \frac{q}{A\Pi^2} = \frac{1}{R} \frac{q}{a^2 \sin^2 \alpha} = \frac{1}{E_B(\Pi)}$

. Par outless, $E_O(\Pi) = \frac{1}{R} \frac{q}{O\Pi^2} = \frac{1}{R} \frac{q}{a^2 \cos^2 \alpha}$

. Des las, come $E_A + E_B = \frac{1}{R} =$

2- Exprimer le potentiel électrique V(M) créé au point M, en fonction de k, q, a et α.

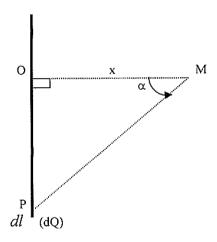
Come
$$V(\Omega) = V_0(\Omega) + V_A(\Omega) + V_B(\Omega)$$
 et $q_A = -q_B$

on a $V(\Omega) = V_0(\Omega)$

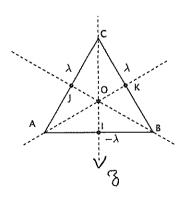
$$= \left| \frac{1}{R} \frac{q}{a \cos A} \right|$$

Exercice 2 Distribution continue (3 points)

On rappelle ici qu'un élément de longueur de charge dQ situé au point P d'un fil de charge linéique λ constante, crée un champ électrique élémentaire $dE_x(M) = \frac{k \cdot \lambda}{x} \cos(\alpha) d\alpha$ où α est tel qu'indiqué cidessous.



1-En utilisant ce résultat calculer les normes des vecteurs $\overrightarrow{E_{AC}}(O)$, $\overrightarrow{E_{CB}}(O)$ et $\overrightarrow{E_{BA}}(O)$ créés respectivement par la distribution continue de charges suivantes au centre O. Représenter ces vecteurs.



où ABC est un triangle équilatéral de côté 2a. Les segments [AC] et [BC] portent une densité linéique de charges λ et [AB] une densité négative $-\lambda$.

On the focalization be calculated by the less mannes:
$$dE_{AC}(0) = \frac{k\lambda}{J_0} \cos \alpha d\alpha \quad \text{et } J_0 = AJ \cdot \tan \frac{\pi}{6}$$

$$= \alpha/J_3$$

$$= E_{AC}(0) = \int_{-\pi/3}^{\pi/3} \frac{k\lambda J_3}{a} \cos \alpha d\alpha$$

$$= k\lambda \frac{J_3}{a} \cdot 2 \sin \left(\frac{\pi}{3}\right) = \frac{k\lambda}{a} \cdot 3$$

$$= E_{CB}(0) = E_{BA}(0) \quad (calculates mannes).$$

2) En déduire l'expression du champ total créé au point O en fonction de k, λ et a

Plusieurs néthodos. J'en pasete une auce les projetés.

$$E_{AC}(0) + E_{CB}(0) = 2 \cos\left(\frac{\pi}{3}\right) \cdot E_{AC} \cdot u_{3}^{2}$$
 $= E_{AC} \cdot u_{3}^{2}$

Janullelement, $E_{AB}(0) = + E_{AB}(0) \cdot u_{3}^{2}$

noune ? O

Donc le chap total $E(0)$ s'eart $E(0) = 6 \frac{h\lambda}{a} \cdot u_{3}^{2}$

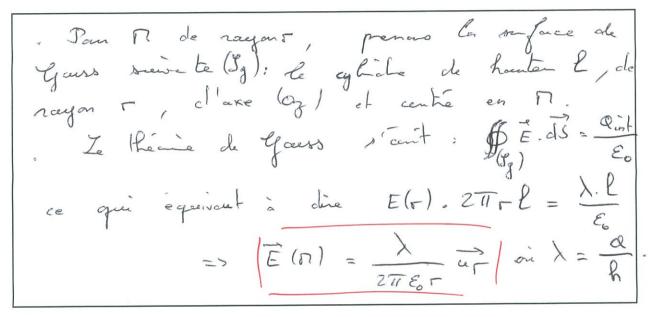
Exercice 3 Théorème de Gauss (6 points)

Un fil de longueur infiniment grande h, porte une charge Q positive répartie avec une densité constante.

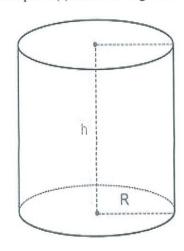
1- Utiliser les symétries et invariances pour donner la direction du vecteur champ électrique créé par le fil en un point M extérieur au fil. On place le fil sur un axe (Oz).

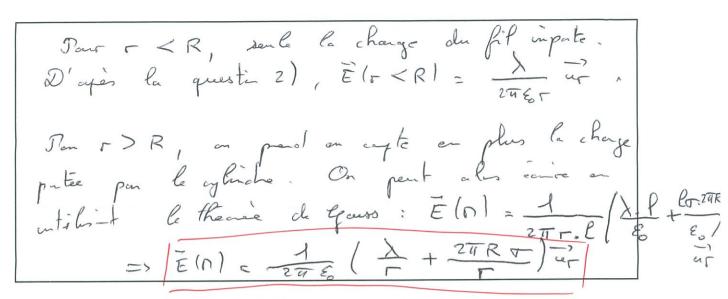
Synthies: perons Ω gcq. Los plans d'fénis par $|\Omega|$, \overline{u}_{Γ} , $\overline{u}_{\overline{G}}$) et $|\Omega|$, \overline{u}_{Γ} , $\overline{u}_{\overline{G}}$) sont des plans de segnétive, donc contiennet $E(\Omega) = E(\Omega) = E(\Omega) = E(\Omega)$ Tovareanees: la chistribut: de charges est invareta par Iretation auton de $|\Omega_{\overline{G}}|$ et | translation selon $|\Omega_{\overline{G}}| = |E(\Omega)| = E(\Omega)$

2- A l'aide du théorème de Gauss, exprimer le champ électrique E(r) créé au point M extérieur au fil.



- 3- On couvre le fil de charge Q par **un cylindre creux** de même axe (Oz), de même hauteur h, de rayon R, chargé en surface latérale avec une densité σ constante et positive.
- a) Donner les expressions du champ électrique E(r) dans les régions r < R et r > R.





b) En déduire les expressions du potentiel électrique V(r) dans les régions r < R et r > R.

Par
$$\Gamma < R$$
, $\vec{E} = -\frac{\lambda}{q a d} V \Rightarrow |V(r) = -\frac{\lambda}{2\pi \epsilon_0} l_{nr} + V_0|$

Par $\Gamma > R$, $|V(r)| = -\frac{1}{2\pi \epsilon_0} (\lambda + 2\pi R_{\overline{V}}) l_{nr} + V_1|$

Remagne: on pent fixer V_0 et V_1 en utilise la continuité du ptetiel $V(\Gamma)$.

<u>Exercice 4</u> Electrocinétique <u>Partie A</u> (3 points)

On considère un conducteur cylindrique d'axe $O\overline{z}$ et de rayon R, traversé par un courant I de densité variable $J(r) = J_0 \frac{r^2}{p^2}$, où J_0 et R sont des constantes.

1- Exprimer le courant total I traversant le conducteur en fonction de R et J_0 . Faire le calcul pour $J_0 = 10^6 \,\text{A/m}^2$ et R = 3mm.

$$= \frac{2\pi J_{o}}{R^{2}} \frac{R^{\frac{1}{2}}}{4} = \frac{\pi R^{2}}{2} J_{o}.$$

$$AN: I = \frac{3^{3} \cdot 10^{-6}}{2} \cdot 10^{6} = \frac{13, 5}{2} A$$

2- Exprimer en fonction de r le courant I' qui traverse une section de rayon r < R.

.
$$3 \text{ dem} : T' = 2\pi J_0 \int_0^{r} \frac{3}{R^2} dr$$

$$= 2\pi J_0 \frac{r^4}{4R^2} = \frac{17J_0}{2} \frac{r^4}{R^2}$$

Partie B (3 points)

Un fil conducteur en cuivre, de conductivité $\gamma = 10^8 \,\Omega^{-1}$.m⁻¹, de longueur L = 1m et de rayon R=1 mm est traversé par un courant I de densité \vec{J} uniforme de valeur $J = 2.10^7 \,\text{A/m}^2$

Calculer:

- 1- La valeur du courant I traversant le conducteur.
- 2- Le champ électrique à l'intérieur du conducteur. Représenter les grandeurs \vec{I} , \vec{J} et \vec{E} .
- 3- La différence de potentiel U entre les bornes du conducteur.
- 4- La résistance R du conducteur.
- 5- La densité électronique n_{e^-} , sachant que la vitesse moyenne des charges est : $V_{moy} = 0.2 ms^{-1}$.

On donne: $q_{e-} = -1.6.10^{-19} C$.

1.
$$T = 3.8 = 3.772^2 = 2.10^7.3.10^{-6}$$

$$= 60 \text{ Al}$$

$$2. ||E|| = ||J|| = \frac{2.10^7}{8} = |2.10^{-1} \text{ V. } -||I|| = \frac{2.10^{-1} \text{ V. } -|I|}{8}$$

$$3. V = ||E||. L = 0.2 \text{ V} \qquad \Rightarrow T \Rightarrow E$$

$$4. R = \frac{V}{T} = \frac{0.2}{60} = 0.33.10^{-2} = |3.3.10^{-3} \text{ Dl}|$$

$$Rem : R = \frac{1}{5} \cdot 8 = \frac{1}{5} \cdot 8$$

$$5. J = n_e \cdot |q_e|. V_{mag} = n_e = \frac{3.3.10^{-3} \text{ Dl}}{|q_e|. V_{mag}} = \frac{7.10^{-7}}{1.6.0^{-13}.2.50}$$

$$= 0.66.10^{27} = \frac{3.5}{10.0}$$

$$= 0.66.10^{27} = \frac{3.5}{10.0}$$

Formulaire

1- Théorème de Gauss :
$$\Phi(\vec{E}) = \oiint_{Sg} \vec{E}.d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon_0}$$

- 2- Elément de surface latérale d'un cylindre de rayon r et de hauteur h : $dS_{tat} = rd\theta.dz$
- 3- Composantes du gradient en coordonnées cylindriques

$$gra\vec{d} = \left(\frac{\partial}{\partial r}, \frac{1}{r}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial z}\right)$$