Exercise 1

1. Using D'Alembert's test (ratio test), determine the nature of the series $\sum \frac{n!}{n^{n}}$.
2. Using Cauchy's test (root test), determine the nature of the series $\sum\left(\frac{(n+1)^{2}}{(a n)^{2}+1}\right)^{n}$ depending on the parameter $a \in \mathbb{R}$.
3. Using Leibniz's test for alternating series, determine the nature of the series $\sum(-1)^{n} \frac{n+1}{n \ln (n)}$.

Exercise 2

Let $A=\left(\begin{array}{ccc}1 & -4 & -2 \\ -1 & 1 & -1 \\ 2 & 4 & 5\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & -2 & -2 \\ -2 & -1 & -4 \\ 2 & 4 & 7\end{array}\right)$.
Are A and B diagonalisable in $\mathscr{M}_{3}(\mathbb{R})$? If so, give a transfer matrix and the associated diagonal matrix ; find the eigenvectors using a methodic study of the eigenspaces.

Exercise 3

Study, depending on the parameter $a \in \mathbb{R}$, the diagonalisability of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2-2 a & 1-a \\
1 & 4 & 1 \\
0 & 2 a-2 & a
\end{array}\right)
$$

(It is not necessary to give a decomposition with transfer matrices and a diagonal matrix).

Exercise 4

Let A be the matrix $\left(\begin{array}{lll}4 & 4 & 2 \\ 4 & 3 & 3 \\ 4 & 5 & 1\end{array}\right)$.
We denote f the endomorphism of \mathbb{R}^{3} standardly associated to A (that is to say, if we denote \mathscr{B} the standard basis of \mathbb{R}^{3} then $\left.A=\operatorname{Mat}_{\mathscr{B}}(f)\right)$.
Let \mathscr{E} be the set $((1,0,1),(2,2,2),(3,3,1))$ of vectors from \mathbb{R}^{3}.

1. Determine $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$.
2. Is A invertible? Justify without calculations.
3. Show that \mathscr{E} is a basis of \mathbb{R}^{3}.
4. Determine $\operatorname{Mat}_{\mathscr{E}}(f)$

Exercise 5

Let E be a vector space over \mathbb{R}, of dimension 4 , and let $\mathscr{E}=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be a basis of E.
Let $p \in \mathscr{L}(E)$ such that

$$
\operatorname{Mat}_{\mathscr{E}}(p)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

1. Show that p is a projection (i.e. $p \circ p=p$).
2. By looking at the images by p of the vectors of \mathscr{E}, find a basis of $\operatorname{Im}(p)$.
3. Using the rank theorem, find the dimension of $\operatorname{Ker}(p)$.
4. Deduce a basis of $\operatorname{Ker}(p)$ depending on the e_{i} vectors.

Exercise 6

The goal of this exercise is to determine a direct formula to compute the terms of the sequence defined by the relation of recurrence

$$
u_{n+3}=-u_{n+2}+4 u_{n+1}+4 u_{n}
$$

and whose first terms are $u_{0}=0, u_{1}=1, u_{2}=1$.

1. Denoting $X_{n}=\left(\begin{array}{c}u_{n+2} \\ u_{n+1} \\ u_{n}\end{array}\right)$, determine a matrix M such that $X_{n+1}=M X_{n}$. Find an expression of X_{n} depending on M, n and X_{0}.
2. Calculate (over expanded form) the characteristic polynomial of M; by remarking that it can be divided by $(X+1)$, factorise it. Show that M is diagonalisable, and find a diagonal matrix D and an invertible matrix P such that $M=P D P^{-1}$.
3. Deduce M^{n} depending on n, then u_{n} depending on n.

Remark : you can check the compatibility of your results with the given data by comparing the first values of u_{n}, calculated both with the relation of recurrence and the obtained formula.

