
Exercise 1

1. Let us denote un =
n!

nn
.

un+1

un

=
(n+ 1)!

(n+ 1)n+1
· n

n

n!
=

(n+ 1)!

n!
· nn

(n+ 1)n+1
=

(n+ 1)nn

(n+ 1)(n+ 1)n
=

(

n

n+ 1

)n

=

(

1 +
1

n

)

−n

= e−n ln(1+ 1

n
) = e−n(

1

n
+o( 1

n
)) = e−1+o(1) −→ 1

e

1

e
< 1 hence, using D’Alembert’s test,

∑

un converges.

2. Let us denote vn =

(

(n+ 1)2

(an)2 + 1

)n

.

n

√
vn =

(n+ 1)2

(an)2 + 1
:

∣

∣

∣

∣

∣

∣

∣

If a = 0, n

√
vn = (n+ 1)2 −→

n→+∞
+∞

If a 6= 0, n

√
vn ∼

+∞

n2

(an)2
=

1

a2

Then, using Cauchy’s test :

— if a = 0 then
∑

vn diverges ;

— if
1

a2
> 1 i.e. a ∈ ]− 1; 1[ \{0} then

∑

vn diverges ;

— if
1

a2
< 1 i.e. a ∈ ]−∞;−1[ ∪ ]1; +∞[ then

∑

vn converges.

If a ∈ {−1; 1} we cannot conclude using Cauchy’s test. However, when this happens :

vn =

(

n2 + 2n+ 1

n2 + 1

)n

=

(

1 +
2n

n2 + 1

)n

> 1 thus vn 9 0

As vn does not respect the necessary condition of convergence,
∑

vn diverges.

3. Let us denote wn =
n+ 1

n ln(n)
.

(wn)n>2 is a sequence of strictly positive terms, and wn ∼
+∞

1

ln(n)
−→
+∞

0.

Let us show that (wn) is decreasing, by studying the variations of the function f : x 7−→ x+ 1

x ln(x)
.

Over [2,+∞[ :

f ′(x) =
x ln(x)− (x + 1)

(

ln(x) + 1
)

x2 ln2(x)
=

−x− 1− ln(x)

x2 ln2(x)
< 0.

f is thus strictly decreasing over [2,+∞[, thus (wn) =
(

f(n)
)

is also strictly decreasing.

Then, using Leibniz’s test for alternating series :

wn is decreasing and tends towards 0, thus
∑

(−1)nwn converges.
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Exercise 2

PA(X) =

∣

∣

∣

∣

∣

∣

1−X −4 −2

−1 1−X −1

2 4 5−X

∣

∣

∣

∣

∣

∣

=
L1←L1+L3

∣

∣

∣

∣

∣

∣

3−X 0 3−X

−1 1−X −1

2 4 5−X

∣

∣

∣

∣

∣

∣

=
C3←C3−C1

∣

∣

∣

∣

∣

∣

3−X 0 0

−1 1−X 0

2 4 3−X

∣

∣

∣

∣

∣

∣

= (1−X)(3−X)2

Thus, PA is split, and the eigenvalues of A are 1 (of multiplicity 1) and 3 (of multiplicity 2). As we

necessarily have dim(E1) = 1, A will be diagonalisable if and only if dim(E3) = 2.





x

y

z



 ∈ E3 ⇐⇒ A





x

y

z



 = 3





x

y

z



 ⇐⇒







x −4y −2z = 3x

−x +y −z = 3y

2x +4y +5z = 3z

⇐⇒







−2x −4y −2z = 0

−x −2y −z = 0

2x +4y +2z = 0

⇐⇒ x+ 2y + z = 0

From which we can deduce that E3 = Span











1

0

−1



 ,





2

−1

0











; thus, as dim(E3) = 2 = m(3) the

matrix A is diagonalisable.

Let us look for an eigenvector associated with the eigenvalue 1 to build a transfer matrix :





x

y

z



 ∈ E1 ⇐⇒ A





x

y

z



 =





x

y

z



 ⇐⇒







x −4y −2z = x

−x +y −z = y

2x +4y +5z = z

⇐⇒







−4y −2z = 0

−x −z = 0

2x +4y +4z = 0

⇐⇒
{

x = −z

z = −2y

Thus, E1 = Span











2

1

−2











.

Therefore :
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A = PDP−1 with for instance P =





2 1 2

1 0 −1

−2 −1 0



 and D =





1 0 0

0 3 0

0 0 3



.

PB(X) =

∣

∣

∣

∣

∣

∣

1−X −2 −2

−2 −1−X −4

2 4 7−X

∣

∣

∣

∣

∣

∣

=
L2←L2+L3

∣

∣

∣

∣

∣

∣

1−X −2 −2

0 3−X 3−X

2 4 7−X

∣

∣

∣

∣

∣

∣

=
C3←C3−C2

∣

∣

∣

∣

∣

∣

1−X −2 0

0 3−X 0

2 4 3−X

∣

∣

∣

∣

∣

∣

= (3−X)

∣

∣

∣

∣

1−X −2

0 3−X

∣

∣

∣

∣

= (1−X)(3−X)2

PB is split, and the eigenvalues of B are thus also 1 (of multiplicity 1) and 3 (of multiplicity 2). As for

A, we already know that dim(E1) = 1 and thus B will be diagonalisable if and only if dim(E3) = 2.





x

y

z



 ∈ E3 ⇐⇒ B





x

y

z



 = 3





x

y

z



 ⇐⇒







x −2y −2z = 3x

−2x −y −4z = 3y

2x +4y +7z = 3z

⇐⇒







−2x −2y −2z = 0

−2x −4y −4z = 0

2x +4y +4z = 0

⇐⇒
{

y = −z

x = 0

Thus E3 = Span











0

1

−1











; as dim(E3) = 1 6= m(3) = 2 the matrix B is not diagonalisable.
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Exercise 3

PA(X) =

∣

∣

∣

∣

∣

∣

1−X 2− 2a 1− a

1 4−X 1

0 2a− 2 a−X

∣

∣

∣

∣

∣

∣

=
L1←L1+L3

∣

∣

∣

∣

∣

∣

1−X 0 1−X

1 4−X 1

0 2a− 2 a−X

∣

∣

∣

∣

∣

∣

=
C3←C3−C1

∣

∣

∣

∣

∣

∣

1−X 0 0

1 4−X 0

0 2a− 2 a−X

∣

∣

∣

∣

∣

∣

= (1 −X)(4−X)(a−X)

Thus PA is always split, and its roots are 1, 4 and a.

If a 6∈ {1, 4} then PA is split with single roots, thus A is diagonalisable.

If a ∈ {1, 4} then a is a double root, and A will be diagonalisable if and only if dim(Ea) = 2.





x

y

z



 ∈ Ea ⇐⇒ A





x

y

z



 = a





x

y

z



 ⇐⇒







x +(2− 2a)y +(1− a)z = ax

x +4y +z = ay

(2a− 2)y +az = az

⇐⇒







(1− a)x +(2− 2a)y +(1− a)z = 0

x +(4− a)y +z = 0

(2a− 2)y = 0

If a = 1 we get the single equation x+3y+ z = 0, thus Ea = E1 = Span











3

−1

0



 ,





1

0

−1











; as this

eigenspace is of dimension 2, A is diagonalisable.

If a = 4 we get

{

y = 0

x = −z
thus Ea = E4 = Span











1

0

−1











, hence dim(Ea) = 1 6= m(a) = 2, and

A is not diagonalisable.

Conclusion : A is diagonalisable if and only if a 6= 4.
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Exercise 4

1.

(x, y, z) ∈ Ker(f) ⇐⇒ A





x

y

z



 =





0

0

0





⇐⇒







4x + 4y + 2z = 0

4x + 3y + 3z = 0

4x + 5y + z = 0

⇐⇒







4x + 4y + 2z = 0

− y + z = 0

y − z = 0

⇐⇒
{

y = z

4x+ 6y = 0

⇐⇒





x

y

z



 =





− 3
2y

y

y





Hence Ker(f) = Span
(

{(−3, 2, 2)}
)

.

Using the rank theorem, we deduce that Im(f) is of dimension 2 ; the first two columns of A form a

linearly independent set of two vectors from Im(f) thus it is a basis : Im(f) = Span
(

{(4, 4, 4), (4, 3, 5)}
)

,

that can be rewritten as, for instance, Span
(

{(1, 1, 1), (0,−1, 1)}
)

.

2. Ker(f) 6= {0} thus f is not injective, thus not bijective ; so, A is not invertible.

3. E is a set of 3 vectors from R3 that is of dimension 3, thus it is a basis of R3 if and only if it is

linearly independent.

λ(1, 0, 1) + µ(2, 2, 2) + ν(3, 3, 1) = (0, 0, 0) ⇐⇒







λ + 2µ + 3ν = 0

2µ + 3ν = 0

λ + 2µ + ν = 0

⇐⇒







λ = 0 (L1 − L2)

ν = 0 (L1 − L3)

µ = 0

Thus E is linearly independent, given its dimension it is a basis of R3.

4. The easiest way is to use the transfer matrices :

MatE (f) = MatB,E (id)MatB(f)MatE ,B(id) = P−1AP,

where P is the transfer matrix from B to E :

P =





1 2 3

0 2 3

1 2 1





After calculation (using for instance a Gaussian elimination), we find that P−1 =





1 −1 0

− 3
4

1
2

3
4

1
2 0 − 1

2



 ;
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hence :

MatE (f) =





1 −1 0

− 3
4

1
2

3
4

1
2 0 − 1

2









4 4 2

4 3 3

4 5 1









1 2 3

0 2 3

1 2 1



 =





−1 0 2
11
4 10 27

2
1
2 0 −1





Exercise 5

1.

MatE (p ◦ p) =
(

MatE (p)
)2

=









1 0 0 0

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3









2

=









1 0 0 0

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3









= MatE (p)

Thus p is a projection.

2. (e1, e2, e3, e4) is a basis of E thus Im(p) = Span
(

{p(e1), p(e2), p(e3), p(e4)}
)

= Span
( {

e1,
1
3 (e2 + e3 + e4)

} )

= Span
(

{e1, (e2 + e3 + e4)}
)

.

3. Using the rank theorem :

dim(E) = dim
(

Im(p)
)

+ dim
(

Ker(p)
)

Hence dim
(

Ker(p)
)

= dim(E)− dim
(

Im(p)
)

= 4− 2 = 2.

4. We just need two find two linearly independent vectors from the kernel to get a basis of it.

Here, we have p(e2) = p(e3) = p(e4), from this we deduce that e2−e3 and e2−e4 belong to Ker(p),

and they are linearly independent as E is a basis of E thus linearly independent. Hence

Ker(p) = Span
(

{e2 − e3, e2 − e4}
)

.

Exercise 6

1. Xn+1 =





un+3

un+2

un+1



 ; by using the relation of recurrence un+3 = −un+2 + 4un+1 + 4un we get

Xn+1 =





−1 4 4

1 0 0

0 1 0



Xn

If we denote this matrix M , by an obvious proof by induction Xn = MnX0.

2.

PM (X) =

∣

∣

∣

∣

∣

∣

−1−X 4 4

1 −X 0

0 1 −X

∣

∣

∣

∣

∣

∣
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By developing with respect to the first row, we get :

PM (X) = (−1−X)

∣

∣

∣

∣

−X 0

1 −X

∣

∣

∣

∣

− 4

∣

∣

∣

∣

1 0

0 −X

∣

∣

∣

∣

+ 4

∣

∣

∣

∣

1 −X

0 1

∣

∣

∣

∣

= (−X − 1)X2 − 4.(−X) + 4 = −(X3 +X2 − 4X − 4)

= −(X + 1)(X2 − 4) = −(X + 1)(X + 2)(X − 2).

PM (X) is split with single roots, thus the matrix M is diagonalisable. Let us look for a basis of

each eigenspace.





x

y

z



 ∈ E−1 ⇐⇒ M





x

y

z



 = −





x

y

z



 ⇐⇒







−x +4y +4z = −x

x = −y

y = −z

⇐⇒
{

y = −x

z = x

Thus E−1 = Span











1

−1

1











.





x

y

z



 ∈ E−2 ⇐⇒ M





x

y

z



 = −2





x

y

z



 ⇐⇒







−x +4y +4z = −2x

x = −2y

y = −2z

⇐⇒
{

x = −2y

y = −2z

Thus E−2 = Span











4

−2

1











.





x

y

z



 ∈ E2 ⇐⇒ M





x

y

z



 = 2





x

y

z



 ⇐⇒







−x +4y +4z = 2x

x = 2y

y = 2z

⇐⇒
{

x = 2y

y = 2z

Thus E2 = Span











4

2

1











.

Therefore, we can write M = PDP−1 with P =





1 4 4

−1 −2 2

1 1 1



 and D =





−1 0 0

0 −2 0

0 0 2



.

3. We now know that Mn = PDnP−1. D being a diagonal matrix, Dn =





(−1)n 0 0

0 (−2)n 0

0 0 2n



.

We still have to caculate P−1, for instance by using a Gaussian elimination.
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P





x

y

z



 =





a

b

c



 ⇐⇒







x +4y +4z = a

−x −2y +2z = b

x +y +z = c

⇐⇒
L2←L2+L1

L3←L3−L1







x +4y +4z = a

2y +6z = a+ b

−3y −3z = −a+ c

⇐⇒
L2←L2+2L3







x +4y +4z = a

−4y = −a+ b+ 2c

−3y −3z = −a+ c

⇐⇒







a = − 1
3a + 4

3c

y = 1
4a − 1

4b − 1
2c

z = 1
12a + 1

4b + 1
6c

Hence P−1 =
1

12





−4 0 16

3 −3 −6

1 3 2



.

Thus, we get :

Mn =
1

12





1 4 4

−1 −2 2

1 1 1









(−1)n 0 0

0 (−2)n 0

0 0 2n









−4 0 16

3 −3 −6

1 3 2





=
1

12





(−1)n 4(−2)n 4.2n

−(−1)n −2(−2)n 2.2n

(−1)n (−2)n 2n









−4 0 16

3 −3 −6

1 3 2





=
1

12





−4(−1)n + 12(−2)n + 4.2n −12(−2)n + 12.2n 16(−1)n − 24(−2)n + 8.2n

4(−1)n − 6(−2)n + 2.2n 6(−2)n + 6.2n −16(−1)n + 12(−2)n + 4.2n

−4(−1)n + 3(−2)n + 2n −3(−2)n + 3.2n 16(−1)n − 6(−2)n + 2.2n





On the last line of this marvellous equation, we read :

un =
1

12

([

− 4(−1)n + 3(−2)n + 2n
]

u2 +
[

− 3(−2)n + 3.2n
]

u1 + [16(−1)n − 6(−2)n + 2.2n]u0

)

that is to say, using the values given in the problem :

un =
1

12
(−4(−1)n + 3(−2)n + 2n − 3(−2)n + 3.2n) =

(−1)n+1 + 2n

3

We can check that the first values are corresponding.
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