Exercise 1

1. Let us denote $u_{n}=\frac{n!}{n^{n}}$.

$$
\begin{aligned}
\frac{u_{n+1}}{u_{n}}=\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!} & =\frac{(n+1)!}{n!} \cdot \frac{n^{n}}{(n+1)^{n+1}}=\frac{(n+1) n^{n}}{(n+1)(n+1)^{n}}=\left(\frac{n}{n+1}\right)^{n}=\left(1+\frac{1}{n}\right)^{-n} \\
& =\mathrm{e}^{-n \ln \left(1+\frac{1}{n}\right)}=\mathrm{e}^{-n\left(\frac{1}{n}+o\left(\frac{1}{n}\right)\right)}=\mathrm{e}^{-1+o(1)} \longrightarrow \frac{1}{\mathrm{e}}
\end{aligned}
$$

$\frac{1}{\mathrm{e}}<1$ hence, using D'Alembert's test, $\sum u_{n}$ converges.
2. Let us denote $v_{n}=\left(\frac{(n+1)^{2}}{(a n)^{2}+1}\right)^{n}$.

$$
\sqrt[n]{v_{n}}=\frac{(n+1)^{2}}{(a n)^{2}+1}: \quad \left\lvert\, \begin{aligned}
& \text { If } a=0, \sqrt[n]{v_{n}}=(n+1)^{2} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty \\
& \text { If } a \neq 0, \sqrt[n]{v_{n}} \underset{+\infty}{\sim} \frac{n^{2}}{(a n)^{2}}=\frac{1}{a^{2}}
\end{aligned}\right.
$$

Then, using Cauchy's test :

- if $a=0$ then $\sum v_{n}$ diverges;
- if $\frac{1}{a^{2}}>1$ i.e. $\left.a \in\right]-1 ; 1\left[\backslash\{0\}\right.$ then $\sum v_{n}$ diverges;
— if $\frac{1}{a^{2}}<1$ i.e. $\left.a \in\right]-\infty ;-1[\cup] 1 ;+\infty\left[\right.$ then $\sum v_{n}$ converges.
If $a \in\{-1 ; 1\}$ we cannot conclude using Cauchy's test. However, when this happens :

$$
v_{n}=\left(\frac{n^{2}+2 n+1}{n^{2}+1}\right)^{n}=\left(1+\frac{2 n}{n^{2}+1}\right)^{n}>1 \text { thus } v_{n} \nrightarrow 0
$$

As v_{n} does not respect the necessary condition of convergence, $\sum v_{n}$ diverges.
3. Let us denote $w_{n}=\frac{n+1}{n \ln (n)}$.
$\left(w_{n}\right)_{n \geqslant 2}$ is a sequence of strictly positive terms, and $w_{n} \underset{+\infty}{\sim} \frac{1}{\ln (n)} \underset{+\infty}{\longrightarrow} 0$.
Let us show that $\left(w_{n}\right)$ is decreasing, by studying the variations of the function $f: x \longmapsto \frac{x+1}{x \ln (x)}$.
Over $[2,+\infty[$:

$$
f^{\prime}(x)=\frac{x \ln (x)-(x+1)(\ln (x)+1)}{x^{2} \ln ^{2}(x)}=\frac{-x-1-\ln (x)}{x^{2} \ln ^{2}(x)}<0 .
$$

f is thus strictly decreasing over $\left[2,+\infty\left[\right.\right.$, thus $\left(w_{n}\right)=(f(n))$ is also strictly decreasing. Then, using Leibniz's test for alternating series : w_{n} is decreasing and tends towards 0 , thus $\sum(-1)^{n} w_{n}$ converges.

Exercise 2

$$
\begin{aligned}
& P_{A}(X)=\left|\begin{array}{ccc}
1-X & -4 & -2 \\
-1 & 1-X & -1 \\
2 & 4 & 5-X
\end{array}\right| \\
& L_{1} \leftarrow \overline{\bar{L}}_{1}+L_{3}
\end{aligned}\left|\begin{array}{ccc}
3-X & 0 & 3-X \\
-1 & 1-X & -1 \\
2 & 4 & 5-X
\end{array}\right|, ~\left|\begin{array}{ccc}
3-X & 0 & 0 \\
-1 & 1-X & 0 \\
2 & 4 & 3-X
\end{array}\right|
$$

Thus, P_{A} is split, and the eigenvalues of A are 1 (of multiplicity 1) and 3 (of multiplicity 2). As we necessarily have $\operatorname{dim}\left(E_{1}\right)=1, A$ will be diagonalisable if and only if $\operatorname{dim}\left(E_{3}\right)=2$.

$$
\begin{aligned}
& \Longleftrightarrow\left\{\begin{aligned}
-2 x-4 y-2 z & =0 \\
-x-2 y-z & =0 \\
2 x+4 y+2 z & =0
\end{aligned}\right. \\
& \Longleftrightarrow \quad x+2 y+z=0
\end{aligned}
$$

From which we can deduce that $E_{3}=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right\}$; thus, as $\operatorname{dim}\left(E_{3}\right)=2=m(3)$ the matrix A is diagonalisable.
Let us look for an eigenvector associated with the eigenvalue 1 to build a transfer matrix :

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in E_{1} \Longleftrightarrow A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{rrr}
x & -4 y & -2 z
\end{array}\right)=x \\
& \Longleftrightarrow\left\{\begin{aligned}
-4 y-2 z & =0 \\
-x-z & =0 \\
2 x+4 y+4 z & =0
\end{aligned}\right. \\
& \Longleftrightarrow \begin{cases}x & =-z \\
z & =-2 y\end{cases}
\end{aligned}
$$

Thus, $E_{1}=\operatorname{Span}\left\{\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)\right\}$.
Therefore :
$A=P D P^{-1}$ with for instance $P=\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 0 & -1 \\ -2 & -1 & 0\end{array}\right)$ and $D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$.

$$
\begin{aligned}
& P_{B}(X)=\left|\begin{array}{ccc}
1-X & -2 & -2 \\
-2 & -1-X & -4 \\
2 & 4 & 7-X
\end{array}\right| \\
& L_{2} \leftarrow \overline{\bar{L}}_{2}+L_{3}
\end{aligned}\left|\begin{array}{ccc}
1-X & -2 & -2 \\
0 & 3-X & 3-X \\
2 & 4 & 7-X
\end{array}\right|, ~ \begin{array}{ccc}
1-X & -2 & 0 \\
0 & 3-X & 0 \\
2 & 4 & 3-X
\end{array}\left|, \begin{array}{ccc}
1-X & -2 \\
C_{3} \leftarrow \overline{\bar{C}}_{3}-C_{2}
\end{array}\right|
$$

P_{B} is split, and the eigenvalues of B are thus also 1 (of multiplicity 1) and 3 (of multiplicity 2). As for A, we already know that $\operatorname{dim}\left(E_{1}\right)=1$ and thus B will be diagonalisable if and only if $\operatorname{dim}\left(E_{3}\right)=2$.

$$
\begin{aligned}
& \Longleftrightarrow\left\{\begin{array}{r}
-2 x-2 y-2 z=0 \\
-2 x-4 y-4 z=0 \\
2 x+4 y+4 z=0
\end{array}\right. \\
& \Longleftrightarrow \begin{cases}y & =-z \\
x & =0\end{cases}
\end{aligned}
$$

Thus $E_{3}=\operatorname{Span}\left\{\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)\right\} ;$ as $\operatorname{dim}\left(E_{3}\right)=1 \neq m(3)=2$ the matrix B is not diagonalisable.

Exercise 3

$$
\begin{aligned}
& P_{A}(X)=\left|\begin{array}{ccc}
1-X & 2-2 a & 1-a \\
1 & 4-X & 1 \\
0 & 2 a-2 & a-X
\end{array}\right| \\
& L_{1} \leftarrow \overline{\bar{L}}_{1}+L_{3}
\end{aligned}\left|\begin{array}{ccc}
1-X & 0 & 1-X \\
1 & 4-X & 1 \\
0 & 2 a-2 & a-X
\end{array}\right|, \left.\begin{array}{ccc}
1-X & 0 & 0 \\
1 & 4-X & 0 \\
0 & 2 a-2 & a-X
\end{array} \right\rvert\,
$$

Thus P_{A} is always split, and its roots are 1,4 and a.
If $a \notin\{1,4\}$ then P_{A} is split with single roots, thus A is diagonalisable.
If $a \in\{1,4\}$ then a is a double root, and A will be diagonalisable if and only if $\operatorname{dim}\left(E_{a}\right)=2$.

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in E_{a} \Longleftrightarrow A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=a\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{rrr}
x & +(2-2 a) y+(1-a) z & =a x \\
x & +4 y & =a y \\
& (2 a-2) y & a z
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{rrll}
(1-a) x+(2-2 a) y & +(1-a) z & =0 \\
x+(4-a) y & +z & =0 \\
& (2 a-2) y & & =0
\end{array}\right.
\end{aligned}
$$

If $a=1$ we get the single equation $x+3 y+z=0$, thus $E_{a}=E_{1}=\operatorname{Span}\left\{\left(\begin{array}{c}3 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right\}$; as this eigenspace is of dimension $2, A$ is diagonalisable.
If $a=4$ we get $\left\{\begin{array}{l}y=0 \\ x=-z\end{array}\right.$ thus $E_{a}=E_{4}=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right\}$, hence $\operatorname{dim}\left(E_{a}\right)=1 \neq m(a)=2$, and A is not diagonalisable.
Conclusion : A is diagonalisable if and only if $a \neq 4$.

Exercise 4

1.

$$
\begin{aligned}
& (x, y, z) \in \operatorname{Ker}(f) \Longleftrightarrow A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Longleftrightarrow\left\{\begin{array}{l}
4 x+4 y+2 z=0 \\
4 x+3 y+3 z=0 \\
4 x+5 y+z=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{aligned}
4 x+4 y+2 z & =0 \\
-y+z & =0 \\
y-z & =0
\end{aligned}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
y=z \\
4 x+6 y=0
\end{array}\right. \\
& \Longleftrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-\frac{3}{2} y \\
y \\
y
\end{array}\right)
\end{aligned}
$$

Hence $\operatorname{Ker}(f)=\operatorname{Span}(\{(-3,2,2)\})$.
Using the rank theorem, we deduce that $\operatorname{Im}(f)$ is of dimension 2 ; the first two columns of A form a linearly independent set of two vectors from $\operatorname{Im}(f)$ thus it is a basis : $\operatorname{Im}(f)=\operatorname{Span}(\{(4,4,4),(4,3,5)\})$, that can be rewritten as, for instance, $\operatorname{Span}(\{(1,1,1),(0,-1,1)\})$.
2. $\operatorname{Ker}(f) \neq\{0\}$ thus f is not injective, thus not bijective; so, A is not invertible.
3. \mathscr{E} is a set of 3 vectors from \mathbb{R}^{3} that is of dimension 3 , thus it is a basis of \mathbb{R}^{3} if and only if it linearly independent.

$$
\begin{aligned}
\lambda(1,0,1)+\mu(2,2,2)+\nu(3,3,1)=(0,0,0) & \Longleftrightarrow\left\{\begin{aligned}
& \lambda+2 \mu+3 \nu= 0 \\
& 2 \mu+3 \nu= 0 \\
& \lambda+2 \mu+\nu=0
\end{aligned}\right. \\
& \Longleftrightarrow \begin{cases}\lambda=0 & \left(L_{1}-L_{2}\right) \\
\nu=0 & \left(L_{1}-L_{3}\right) \\
\mu=0\end{cases}
\end{aligned}
$$

Thus \mathscr{E} is linearly independent, given its dimension it is a basis of \mathbb{R}^{3}.
4. The easiest way is to use the transfer matrices :

$$
\operatorname{Mat}_{\mathscr{E}}(f)=\operatorname{Mat}_{\mathscr{B}, \mathscr{E}}(i d) \operatorname{Mat}_{\mathscr{B}}(f) \operatorname{Mat}_{\mathscr{E}, \mathscr{B}}(i d)=P^{-1} A P
$$

where P is the transfer matrix from \mathscr{B} to \mathscr{E} :

$$
P=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right)
$$

After calculation (using for instance a Gaussian elimination), we find that $P^{-1}=\left(\begin{array}{ccc}1 & -1 & 0 \\ -\frac{3}{4} & \frac{1}{2} & \frac{3}{4} \\ \frac{1}{2} & 0 & -\frac{1}{2}\end{array}\right)$;
hence :

$$
\operatorname{Mat}_{\mathscr{E}}(f)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-\frac{3}{4} & \frac{1}{2} & \frac{3}{4} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{lll}
4 & 4 & 2 \\
4 & 3 & 3 \\
4 & 5 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 2 \\
\frac{11}{4} & 10 & \frac{27}{2} \\
\frac{1}{2} & 0 & -1
\end{array}\right)
$$

Exercise 5

1.

$$
\operatorname{Mat}_{\mathscr{E}}(p \circ p)=\left(\operatorname{Mat}_{\mathscr{E}}(p)\right)^{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)^{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)=\operatorname{Mat}_{\mathscr{E}}(p)
$$

Thus p is a projection.
2. $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is a basis of E thus $\operatorname{Im}(p)=\operatorname{Span}\left(\left\{p\left(e_{1}\right), p\left(e_{2}\right), p\left(e_{3}\right), p\left(e_{4}\right)\right\}\right)$
$=\operatorname{Span}\left(\left\{e_{1}, \frac{1}{3}\left(e_{2}+e_{3}+e_{4}\right)\right\}\right)=\operatorname{Span}\left(\left\{e_{1},\left(e_{2}+e_{3}+e_{4}\right)\right\}\right)$.
3. Using the rank theorem :

$$
\operatorname{dim}(E)=\operatorname{dim}(\operatorname{Im}(p))+\operatorname{dim}(\operatorname{Ker}(p))
$$

Hence $\operatorname{dim}(\operatorname{Ker}(p))=\operatorname{dim}(E)-\operatorname{dim}(\operatorname{Im}(p))=4-2=2$.
4. We just need two find two linearly independent vectors from the kernel to get a basis of it.

Here, we have $p\left(e_{2}\right)=p\left(e_{3}\right)=p\left(e_{4}\right)$, from this we deduce that $e_{2}-e_{3}$ and $e_{2}-e_{4}$ belong to $\operatorname{Ker}(p)$, and they are linearly independent as \mathscr{E} is a basis of E thus linearly independent. Hence

$$
\operatorname{Ker}(p)=\operatorname{Span}\left(\left\{e_{2}-e_{3}, e_{2}-e_{4}\right\}\right)
$$

Exercise 6

1. $X_{n+1}=\left(\begin{array}{l}u_{n+3} \\ u_{n+2} \\ u_{n+1}\end{array}\right)$; by using the relation of recurrence $u_{n+3}=-u_{n+2}+4 u_{n+1}+4 u_{n}$ we get

$$
X_{n+1}=\left(\begin{array}{ccc}
-1 & 4 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) X_{n}
$$

If we denote this matrix M, by an obvious proof by induction $X_{n}=M^{n} X_{0}$.
2.

$$
P_{M}(X)=\left|\begin{array}{ccc}
-1-X & 4 & 4 \\
1 & -X & 0 \\
0 & 1 & -X
\end{array}\right|
$$

By developing with respect to the first row, we get :

$$
\begin{aligned}
P_{M}(X) & =(-1-X)\left|\begin{array}{cc}
-X & 0 \\
1 & -X
\end{array}\right|-4\left|\begin{array}{cc}
1 & 0 \\
0 & -X
\end{array}\right|+4\left|\begin{array}{cc}
1 & -X \\
0 & 1
\end{array}\right| \\
& =(-X-1) X^{2}-4 \cdot(-X)+4=-\left(X^{3}+X^{2}-4 X-4\right) \\
& =-(X+1)\left(X^{2}-4\right)=-(X+1)(X+2)(X-2) .
\end{aligned}
$$

$P_{M}(X)$ is split with single roots, thus the matrix M is diagonalisable. Let us look for a basis of each eigenspace.

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in E_{-1} \Longleftrightarrow M\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \Longleftrightarrow\left\{\begin{array}{rrr}
-x+4 y+4 z & =-x \\
x & & =-y \\
y & =-z
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{aligned}
y=-x \\
z=1
\end{aligned}\right.
\end{aligned}
$$

Thus $E_{-1}=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right\}$.

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in E_{-2} \Longleftrightarrow M\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-2\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \Longleftrightarrow\left\{\begin{array}{rrr}
-x & +4 y+4 z & =-2 x \\
x & y & =-2 y \\
& =-2 z
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{aligned}
x=-2 y \\
y=-2 z
\end{aligned}\right.
\end{aligned}
$$

Thus $E_{-2}=\operatorname{Span}\left\{\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)\right\}$.

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in E_{2} \Longleftrightarrow M\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=2\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \Longleftrightarrow\left\{\begin{array}{rr}
-x+4 y+4 z & =2 x \\
x & y
\end{array}\right)=2 y \\
y & \Longleftrightarrow \begin{cases}x=2 y \\
y & =2 z\end{cases}
\end{aligned}
$$

Thus $E_{2}=\operatorname{Span}\left\{\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)\right\}$.
Therefore, we can write $M=P D P^{-1}$ with $P=\left(\begin{array}{ccc}1 & 4 & 4 \\ -1 & -2 & 2 \\ 1 & 1 & 1\end{array}\right)$ and $D=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2\end{array}\right)$.
3. We now know that $M^{n}=P D^{n} P^{-1}$. D being a diagonal matrix, $D^{n}=\left(\begin{array}{ccc}(-1)^{n} & 0 & 0 \\ 0 & (-2)^{n} & 0 \\ 0 & 0 & 2^{n}\end{array}\right)$. We still have to caculate P^{-1}, for instance by using a Gaussian elimination.

$$
\begin{aligned}
& P\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{rr}
x+4 y+4 z & =a \\
-x & -2 y \\
x & +2 z
\end{array}=b\right.
\end{aligned}
$$

$$
\begin{aligned}
& \underset{L_{2}}{ } \stackrel{L_{2}+2 L_{3}}{\Longleftrightarrow}\left\{\begin{aligned}
x+4 y+4 z & =a \\
-4 y & =-a+b+2 c \\
-3 y-3 z & =-a+c
\end{aligned}\right. \\
& \Longleftrightarrow \quad\left\{\begin{array}{llll}
a & = & -\frac{1}{3} a & +\frac{4}{3} c \\
y & =\frac{1}{4} a & -\frac{1}{4} b & -\frac{1}{2} c \\
z & =\frac{1}{12} a & +\frac{1}{4} b & +\frac{1}{6} c
\end{array}\right.
\end{aligned}
$$

Hence $P^{-1}=\frac{1}{12}\left(\begin{array}{ccc}-4 & 0 & 16 \\ 3 & -3 & -6 \\ 1 & 3 & 2\end{array}\right)$.
Thus, we get :

$$
\begin{aligned}
M^{n} & =\frac{1}{12}\left(\begin{array}{ccc}
1 & 4 & 4 \\
-1 & -2 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
(-1)^{n} & 0 & 0 \\
0 & (-2)^{n} & 0 \\
0 & 0 & 2^{n}
\end{array}\right)\left(\begin{array}{ccc}
-4 & 0 & 16 \\
3 & -3 & -6 \\
1 & 3 & 2
\end{array}\right) \\
& =\frac{1}{12}\left(\begin{array}{ccc}
(-1)^{n} & 4(-2)^{n} & 4.2^{n} \\
-(-1)^{n} & -2(-2)^{n} & 2.2^{n} \\
(-1)^{n} & (-2)^{n} & 2^{n}
\end{array}\right)\left(\begin{array}{ccc}
-4 & 0 & 16 \\
3 & -3 & -6 \\
1 & 3 & 2
\end{array}\right) \\
& =\frac{1}{12}\left(\begin{array}{ccc}
-4(-1)^{n}+12(-2)^{n}+4.2^{n} & -12(-2)^{n}+12.2^{n} & 16(-1)^{n}-24(-2)^{n}+8.2^{n} \\
4(-1)^{n}-6(-2)^{n}+2.2^{n} & 6(-2)^{n}+6.2^{n} & -16(-1)^{n}+12(-2)^{n}+4.2^{n} \\
-4(-1)^{n}+3(-2)^{n}+2^{n} & -3(-2)^{n}+3.2^{n} & 16(-1)^{n}-6(-2)^{n}+2.2^{n}
\end{array}\right)
\end{aligned}
$$

On the last line of this marvellous equation, we read :

$$
u_{n}=\frac{1}{12}\left(\left[-4(-1)^{n}+3(-2)^{n}+2^{n}\right] u_{2}+\left[-3(-2)^{n}+3.2^{n}\right] u_{1}+\left[16(-1)^{n}-6(-2)^{n}+2.2^{n}\right] u_{0}\right)
$$

that is to say, using the values given in the problem :

$$
u_{n}=\frac{1}{12}\left(-4(-1)^{n}+3(-2)^{n}+2^{n}-3(-2)^{n}+3.2^{n}\right)=\frac{(-1)^{n+1}+2^{n}}{3}
$$

We can check that the first values are corresponding.

