Correction of the final exam S3

Exercise 1 (5.5 points)

In $E=\mathbb{R}^{3}$, consider the family $\mathcal{F}=\left(\varepsilon_{1}=(1,-1,2), \varepsilon_{2}=(-1,4,1), \varepsilon_{3}=(1,-2,1)\right)$.

1. Is \mathcal{F} a basis of E ? If it is not, extract a maximal independent subfamily and complete it to get a basis of E. The final basis will be denoted by \mathcal{B}^{\prime}.

This family is linearly dependent because $-2 \varepsilon_{1}+\varepsilon_{2}+3 \varepsilon_{3}=0_{E}$. Hence, for example, $\operatorname{Span} \mathcal{F}=\operatorname{Span}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ where $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is linearly independent.
To get a basis of E, let us complete this family by adding the vector $\varepsilon_{4}=(0,0,1)$. Let us prove that $\mathcal{B}^{\prime}=\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{4}\right)$ is a basis of E.

- \mathcal{B}^{\prime} is linearly independent: for all $(a, b, c) \in \mathbb{R}^{3}$,

$$
\begin{aligned}
a \varepsilon_{1}+b \varepsilon_{2}+c \varepsilon_{4}=0_{E} & \Longrightarrow \begin{cases}a-b & =0 \\
-a+4 b & =0 \\
2 a+b+c & =0\end{cases} \\
& \Longrightarrow \begin{cases}a-b & =0 \\
3 b & =0 \\
2 a+b+c & =0\end{cases} \\
& \Longrightarrow a=b=c=0
\end{aligned}
$$

- \mathcal{B}^{\prime} is a spanning family of E. Indeed,

$$
\left.\begin{array}{c}
\mathcal{B}^{\prime} \text { independent } \\
\operatorname{Card}\left(\mathcal{B}^{\prime}\right)=3=\operatorname{dim}(E)
\end{array}\right\} \Longrightarrow \mathcal{B}^{\prime} \text { spanning family of } E
$$

Thus,, \mathcal{B}^{\prime} is a basis of E.
2. Find the coordinates in \mathcal{B}^{\prime} of the vector $u=(2,0,6)$ $u=(2,0,6)=\frac{8}{3}(1,-1,2)+\frac{2}{3}(-1,4,1)=\frac{8}{3} \varepsilon_{1}+\frac{2}{3} \varepsilon_{2}+0 \varepsilon_{4}$.

The coordinates of u in basis \mathcal{B}^{\prime} are hence $\left(\frac{8}{3}, \frac{2}{3}, 0\right)$.
3. Write the transition matrix from the standard basis \mathcal{B} to basis \mathcal{B}^{\prime}.

The transition matrix from \mathcal{B} to \mathcal{B}^{\prime} is $P=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 4 & 0 \\ 2 & 1 & 1\end{array}\right)$.

Exercise 2 (6.5 points)

Consider the linear map $f:\left\{\begin{array}{rll}\mathbb{R}_{2}[X] & \longrightarrow & \mathbb{R}^{2} \\ P & \longmapsto & \left(P(1), \int_{0}^{2} P(x) \mathrm{d} x\right)\end{array}\right.$

1. Find the matrix of f in the standard bases $\left(1, X, X^{2}\right)$ as input basis and $((1,0),(0,1))$ as output basis.

If $P=1$, then $P(1)=1$ and $\int_{0}^{2} P(x) \mathrm{d} x=\int_{0}^{2} 1 \mathrm{~d} x=2$. Hence $f(1)=(1,2)$.
If $P=X$, then $P(1)=1$ and $\int_{0}^{2} P(x) \mathrm{d} x=\int_{0}^{2} x \mathrm{~d} x=\left[\frac{x^{2}}{2}\right]_{0}^{2}=2$. Hence $f(X)=(1,2)$.
If $P=X^{2}$, then $P(1)=1$ and $\int_{0}^{2} P(x) \mathrm{d} x=\int_{0}^{2} x^{2} \mathrm{~d} x=\left[\frac{x^{3}}{3}\right]_{0}^{2}=\frac{8}{3}$. Hence $f\left(X^{2}\right)=\left(1, \frac{8}{3}\right)$.
Finally, the matrix of f is $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & \frac{8}{3}\end{array}\right)$.
2. Find a basis of $\operatorname{Ker}(f)$ and deduce its dimension.

$$
\begin{aligned}
& \operatorname{Ker}(f)=\left\{a_{0}+a_{1} X+a_{2} X^{2} \in \mathbb{R}_{2}[X], \left\lvert\, \begin{array}{r}
a_{0}+a_{1}+a_{2}=0 \\
2 a_{0}+2 a_{1}+\frac{8}{3} a_{2}=0
\end{array}\right.\right\} \\
& =\left\{a_{0}+a_{1} X+a_{2} X^{2} \in \mathbb{R}_{2}[X], \left\lvert\, \begin{array}{rll}
a_{0}+a_{1}+a_{2} & =0 \\
\frac{2}{3} a_{2} & =0 & \left(E_{2}-2 E_{1}\right)
\end{array}\right.\right\} \\
& =\left\{a_{0}+a_{1} X+a_{2} X^{2} \in \mathbb{R}_{2}[X], a_{0}=-a_{1} \text { and } a_{2}=0\right\} \\
& =\left\{a_{1}(X-1), a_{1} \in \mathbb{R}\right\} \\
& =\operatorname{Span}(X-1)
\end{aligned}
$$

Since $(X-1)$ is linearly independent, it is a basis of $\operatorname{Ker}(f)$. Thus, $\operatorname{dim}(\operatorname{Ker}(f))=1$.
3. Find a basis of $\operatorname{Im}(f)$ and deduce its dimension.

$$
\operatorname{Im}(f)=\operatorname{Span} \underbrace{\left((1,2),(1,2),\left(1, \frac{8}{3}\right)\right)}_{\text {dependent }}=\operatorname{Span} \underbrace{\left((1,2),\left(1, \frac{8}{3}\right)\right)}_{\text {independent }}
$$

Thus, a basis of $\operatorname{Im}(f)$ is $\left((1,2),\left(1, \frac{8}{3}\right)\right)$ and $\operatorname{dim}(\operatorname{Im}(f))=2$.
4. Write the rank-nullity theorem and check that your results are consistent with the theorem

Rank nullity theorem: if $f \in \mathcal{L}(E, F)$ where E is finite-dimensional, then $\operatorname{dim}(E)=\operatorname{dim}(\operatorname{Ker}(f))+\operatorname{dim}(\operatorname{Im}(f))$.
Here, $E=\mathbb{R}_{2}[X], \operatorname{dim}(E)=3$, $\operatorname{dim}(\operatorname{Ker}(f))=1$ and $\operatorname{dim}(\operatorname{Im}(f))=2$. We get: $3=1+2$.
5. Find the set S of all the polynomials $P \in \mathbb{R}_{2}[X]$ such that $f(P)=(3,8)$.

To start with, note that $P=3 X^{2}$ is a particular solution. Thus, for all $P \in \mathbb{R}[X]$,

$$
P \in S \Longleftrightarrow f(P)=f\left(3 X^{2}\right) \Longleftrightarrow f\left(P-3 X^{2}\right)=(0,0) \Longleftrightarrow P-3 X^{2} \in \operatorname{Ker}(f)
$$

Hence, $S=\left\{3 X^{2}+k(X-1), k \in \mathbb{R}\right\}$.

Exercise 3: proving a lecture theorem (5 points)

Let E be a finite-dimensional vector space, F and G two linear subspaces of E of non-zero dimensions n and p.
Let $\mathcal{B}_{1}=\left(e_{1}, \cdots, e_{n}\right)$ be a basis of F and $\mathcal{B}_{2}=\left(\varepsilon_{1}, \cdots, \varepsilon_{p}\right)$ be a basis of G. Consider the family

$$
\mathcal{F}=\left(e_{1}, \cdots, e_{n}, \varepsilon_{1}, \cdots, \varepsilon_{p}\right)
$$

that is, \mathcal{F} is the concatenation of \mathcal{B}_{1} and \mathcal{B}_{2}.
Show that $F \cap G=\left\{0_{E}\right\} \Longrightarrow \mathcal{F}$ is linearly independent.
Let $\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{p}\right) \in \mathbb{R}^{n+p}$ such that

$$
a_{1} e_{1}+\cdots+a_{n} e_{n}+b_{1} \varepsilon_{1}+\cdots+b_{p} \varepsilon_{p}=0_{E}
$$

Then: $a_{1} e_{1}+\cdots+a_{n} e_{n}=-b_{1} \varepsilon_{1}-\cdots-b_{p} \varepsilon_{p}$.

We hence deduce that: $a_{1} e_{1}+\cdots+a_{n} e_{n}=-b_{1} \varepsilon_{1}-\cdots-b_{p} \varepsilon_{p} \in F \cap G$.
But $F \cap G=\left\{0_{E}\right\}$. Thus, $a_{1} e_{1}+\cdots+a_{n} e_{n}=-b_{1} \varepsilon_{1}-\cdots-b_{p} \varepsilon_{p}=0_{E}$.
Since \mathcal{B}_{1} is a basis of F, it is independent. Thus,

$$
a_{1} e_{1}+\cdots+a_{n} e_{n}=0_{E} \Longrightarrow\left(a_{1}, \cdots, a_{n}\right)=(0, \cdots, 0)
$$

Similarly, \mathcal{B}_{2} is independent and

$$
-b_{1} \varepsilon_{1}-\cdots-b_{p} \varepsilon_{p}=0_{E} \Longrightarrow\left(-b_{1}, \cdots,-b_{p}\right)=(0, \cdots, 0) \Longrightarrow\left(b_{1}, \cdots, b_{p}\right)=(0, \cdots, 0)
$$

Finally, $\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{p}\right)=(0, \cdots, 0)$. The family \mathcal{F} is hence linearly independent.

Exercise 4: building a projector (8 points)

Let $E=\mathbb{R}^{3}$ together with its standard basis \mathcal{B}. Consider the linear subspaces

$$
F=\{(x, y, z) \in E, x+2 y-z=0\} \quad \text { and } \quad G=\left\{(x, y, z) \in E, \begin{array}{l}
x+y+z=0 \\
x+y-z=0
\end{array}\right\}
$$

1. Find a basis of F and a basis of G.

$$
\begin{aligned}
F & =\left\{(x, y, z) \in \mathbb{R}^{3}, z=x+2 y\right\} \\
& =\left\{(x, y, x+2 y),(x, y) \in \mathbb{R}^{2}\right\} \\
& =\left\{x(1,0,1)+y(0,1,2),(x, y) \in \mathbb{R}^{2}\right\}=\operatorname{Span} \underbrace{((1,0,1),(0,1,2))}_{\text {independent }}
\end{aligned}
$$

A basis of F is hence $\mathcal{B}_{1}=\left(\varepsilon_{1}=(1,0,1), \varepsilon_{2}=(0,1,2)\right)$.

$$
\left.\begin{array}{rl}
G & =\left\{(x, y, z) \in \mathbb{R}^{3}, \left\lvert\, \begin{array}{r}
x+y+z=0 \\
x+y-z=0
\end{array}\right.\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3}, \left\lvert\, \begin{array}{r}
x+y+z=0 \\
2 z=0
\end{array} \quad\left(E_{1}-E_{2}\right)\right.\right.
\end{array}\right\},
$$

A basis of G is hence $\mathcal{B}_{2}=\left(\varepsilon_{3}=(1,-1,0)\right)$.
2. Show that $E=F \oplus G$.

It is sufficient to prove that $\mathcal{B}^{\prime}=\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ (concatenation of \mathcal{B}_{1} and \mathcal{B}_{2}) is a basis of E.

- \mathcal{B}^{\prime} is linearly independent: for all $(a, b, c) \in \mathbb{R}^{3}$,

$$
\begin{aligned}
a \varepsilon_{1}+b \varepsilon_{2}+c \varepsilon_{3}=0_{E} & \Longrightarrow\left\{\begin{aligned}
& a+c=0 \\
& b-c=0 \\
& a+2 b=0
\end{aligned}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
a+c=0 \\
a+b=0 \\
a+2 b=0
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{r}
a+c=0 \\
a+b=0 \\
b=0
\end{array} \quad\left(E_{2}+E_{1}\right)\right. \\
& \Longrightarrow a=b=c=0
\end{aligned}
$$

- \mathcal{B}^{\prime} is a spanning family of E. Indeed,

$$
\left.\begin{array}{c}
\mathcal{B}^{\prime} \text { independent } \\
\operatorname{Card}\left(\mathcal{B}^{\prime}\right)=3=\operatorname{dim}(E)
\end{array}\right\} \Longrightarrow \mathcal{B}^{\prime} \text { spanning family of } E
$$

Thus, \mathcal{B}^{\prime} is a basis of E, which proves that $F \oplus G=E$.
3. According to previous question, we know that for all $u \in E$, there exists a unique $(v, w) \in F \times G$ such that $u=v+w$. Consider the endomorphism $p: u \longmapsto w$.
(a) Assume that $u \in F$. What is the value of $p(u)$? Justify.

If $u \in F$, then $u=\underbrace{u}_{\in F}+\underbrace{0_{E}}_{\in G} \Longrightarrow v=u$ and $w=0_{E} \Longrightarrow p(u)=w=0_{E}$.
(b) Assume that $u \in G$. What is the value of $p(u)$? Justify.

If $u \in G$, then $u=\underbrace{0_{E}}_{\in F}+\underbrace{u}_{\in G} \Longrightarrow v=0_{E}$ and $w=u \Longrightarrow p(u)=w=u$.
(c) Let \mathcal{B}^{\prime} be the basis of E resulting from the concatenation of the bases of F and G that you got at question 1. Find the matrix of p in basis \mathcal{B}^{\prime} as input and output bases. This matrix is denoted by A^{\prime}.
$\varepsilon_{1} \in F \Longrightarrow p\left(\varepsilon_{1}\right)=0_{E}$. Thus, the coordinates in \mathcal{B}^{\prime} of $p\left(\varepsilon_{1}\right)$ are $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
Similarly, $\varepsilon_{2} \in F \Longrightarrow p\left(\varepsilon_{2}\right)=0_{E}$ has coordinates $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
$\varepsilon_{3} \in G \Longrightarrow p\left(\varepsilon_{3}\right)=\varepsilon_{3}=0 \varepsilon_{1}+0 \varepsilon_{2}+1 \varepsilon_{3}$. Thus, the coordinates in \mathcal{B}^{\prime} of $p\left(\varepsilon_{3}\right)$ are $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
Finally, $A^{\prime}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(d) Let A be the matrix of p in the standard basis as input and output bases. Write the matrix relation which enables one to compute A. The final computation of A is not required.

Let $P=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 0\end{array}\right)$ be the transition matrix from the standard basis \mathcal{B} to \mathcal{B}^{\prime}. Then: $A^{\prime}=P^{-1} A P \Longrightarrow A=P A^{\prime} P^{-1}$.

Exercise 5: solving a differential system (7 points)

We search all the differentiable real function x and y, defined on \mathbb{R} and satisfying to:

$$
x(0)=1, \quad y(0)=2 \quad \text { and } \quad \forall t \in \mathbb{R},\left\{\begin{aligned}
x^{\prime}(t) & =-5 x(t)+4 y(t) \\
y^{\prime}(t) & =-6 x(t)+5 y(t)
\end{aligned}\right.
$$

In that purpose, consider the vector function $u:\left\{\begin{array}{rll}\mathbb{R} & \longrightarrow & \mathbb{R}^{2} \\ t & \longmapsto & (x(t), y(t))\end{array}\right.$ and its derivative $u^{\prime}:\left\{\begin{array}{rll}\mathbb{R} & \longrightarrow & \mathbb{R}^{2} \\ t & \longmapsto & \left(x^{\prime}(t), y^{\prime}(t)\right)\end{array}\right.$. Remind that, for all $\left(z_{0}, a\right) \in \mathbb{R}^{2}$, the unique differentiable real function z satisfying to

$$
z(0)=z_{0} \quad \text { and } \quad \forall t \in \mathbb{R}, z^{\prime}(t)=a z(t)
$$

is the function $z: t \longmapsto z_{0} e^{a t}$.

1. Find $f \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ such that for all $t \in \mathbb{R}, u^{\prime}(t)=f(u(t))$, and write the matrix of f in the standard basis of \mathbb{R}^{2}.

The linear map is $f:\left\{\begin{array}{cll}\mathbb{R}^{2} & \longrightarrow & \mathbb{R}^{2} \\ (x, y) & \longmapsto & (-5 x+4 y,-6 x+5 y)\end{array}\right.$
Its matrix in the standard basis (as input and output basis) is $A=\left(\begin{array}{cc}-5 & 4 \\ -6 & 5\end{array}\right)$
2. In \mathbb{R}^{2}, consider the standard basis $\mathcal{B}_{1}=\left(e_{1}=(1,0), e_{2}=(0,1)\right)$ and another basis $\mathcal{B}_{2}=\left(\varepsilon_{1}=(1,1), \varepsilon_{2}=(2,3)\right)$.
(a) Write the transition matrix P from \mathcal{B}_{1} to \mathcal{B}_{2} and find its inverse matrix P^{-1}.

$$
P=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right) \quad \text { and } \quad P^{-1}=\left(\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right)
$$

(b) Find the coordinates of $u(0)=(1,2)$ in basis \mathcal{B}_{2}.

The coordinates of $u(0)$ in \mathcal{B}_{2} are $X_{2}(0)=P^{-1}\binom{1}{2}=\binom{-1}{1}$.
We can check that $u(0)=-\varepsilon_{1}+\varepsilon_{2}$.
(c) Find the matrix of f in basis \mathcal{B}_{2} as input and output bases.
$f\left(\varepsilon_{1}\right)=(-1,-1)=-\varepsilon_{1}+0 \varepsilon_{2}$, whose coordinates in \mathcal{B}_{2} are $\binom{-1}{0}$.
$f\left(\varepsilon_{2}\right)=(2,3)=0 \varepsilon_{1}+\varepsilon_{2}$, whose coordinates in \mathcal{B}_{2} are $\binom{0}{1}$.
The matrix of f in \mathcal{B}_{2} as input and output basis is hence $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
(d) Let $X_{2}(t)=\binom{x_{2}(t)}{y_{2}(t)}$ and $X_{2}^{\prime}(t)=\binom{x_{2}^{\prime}(t)}{y_{2}^{\prime}(t)}$ be the columns containing the coordinates in \mathcal{B}_{2} of the vectors $u(t)$ and $u^{\prime}(t)$. Find a matrix relation which enables one to get $X_{2}^{\prime}(t)$ depending on $X_{2}(t)$.

$$
\forall t \in \mathbb{R}, u^{\prime}(t)=f(u(t)) \Longrightarrow X_{2}^{\prime}(t)=D X_{2}(t) \Longrightarrow\left\{\begin{aligned}
x_{2}^{\prime}(t) & =-x_{2}(t) \\
y_{2}^{\prime}(t) & =y_{2}(t)
\end{aligned}\right.
$$

(e) Find the functions $t \longmapsto x_{2}(t)$ and $t \longmapsto y_{2}(t)$.

Using previous questions, we get:

$$
x_{2}(0)=-1 \quad \text { and } \quad \forall t \in \mathbb{R}, x_{2}^{\prime}(t)=-x_{2}(t) \Longrightarrow x_{2}(t)=-e^{-t}
$$

Similarly,

$$
y_{2}(0)=1 \quad \text { and } \quad \forall t \in \mathbb{R}, y_{2}^{\prime}(t)=y_{2}(t) \Longrightarrow y_{2}(t)=e^{t}
$$

(f) Deduce the functions $t \longmapsto x(t)$ and $t \longmapsto y(t)$.

For all $t \in \mathbb{R}$, the column $X(t)=\binom{x(t)}{y(t)}$ contains the coordinates of $u(t)$ in the standard basis. Furthermore, we know that $X(t)=P X_{2}(t)$. Hence,

$$
\binom{x(t)}{y(t)}=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right)\binom{-e^{-t}}{e^{t}}=\binom{-e^{-t}+2 e^{t}}{-e^{-t}+3 e^{t}}
$$

Finally, for all $t \in \mathbb{R}$,

$$
x(t)=-e^{-t}+2 e^{t} \quad \text { and } \quad y(t)=-e^{-t}+3 e^{t}
$$

Exercise 6: diagonalization of square matrices (8 points)

Consider the matrices $A=\left(\begin{array}{ccc}2 & -4 & 1 \\ 0 & -2 & 1 \\ 4 & -5 & 0\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 5 & 5 \\ -5 & -8 & -5 \\ 5 & 5 & 2\end{array}\right)$.

1. Compute in factorized form their characteristic polynomials. Check that the eigenvalues of A are -1 and 2 , and that the eigenvalues of B are -3 and 2 .

$$
\begin{aligned}
P_{A}(X)=\left|\begin{array}{ccc}
2-X & -4 & 1 \\
0 & -2-X & 1 \\
4 & -5 & -X
\end{array}\right| & =\left|\begin{array}{ccc}
2-X & -2+X & 0 \\
0 & -2-X & 1 \\
4 & -5 & -X
\end{array}\right| \quad\left(R_{1} \leftarrow R_{1}-R_{2}\right) \\
& =\left|\begin{array}{ccc}
2-X & 0 & 0 \\
0 & -2-X & 1 \\
4 & -1 & -X
\end{array}\right| \quad\left(C_{2} \leftarrow C_{2}+C_{1}\right) \\
& =(2-X) \times[(-2-X)(-X)+1] \\
& =(2-X) \times \underbrace{\left[X^{2}+2 X+1\right]}_{(X+1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
P_{B}(X)=\left|\begin{array}{ccc}
2-X & 5 & 5 \\
-5 & -8-X & -5 \\
5 & 5 & 2-X
\end{array}\right| & =\left|\begin{array}{ccc}
-3-X & 5 & 5 \\
3+X & -8-X & -5 \\
0 & 5 & 2-X
\end{array}\right| \quad\left(C_{1} \leftarrow C_{1}-C_{2}\right) \\
& =\left|\begin{array}{ccc}
-3-X & 5 & 5 \\
0 & -3-X & 0 \\
0 & 5 & 2-X
\end{array}\right| \quad\left(R_{2} \leftarrow R_{2}+R_{1}\right) \\
& =(-3-X) \times[(-3-X)(2-X)-0]=(-3-X)^{2}(2-X)
\end{aligned}
$$

2. Are the matrices A and B diagonalizable in $\mathscr{M}_{3}(\mathbb{R})$? If they are, find the matrices P and D. Be accurate in your redaction.

- Matrix A :
$\operatorname{Sp}(A)=\{-1,2\}$ with $m(-1)=2$ and $m(2)=1$. Hence, A is diagonalizable iff $\operatorname{dim}\left(E_{-1}\right)=2$.

$$
\begin{aligned}
E_{-1} & =\left\{(x, y, z) \in \mathbb{R}^{3}, \left\lvert\, \begin{array}{ccc}
3 x-4 y+z & = & 0 \\
-y+z & = & 0 \\
4 x-5 y+z & = & 0
\end{array}\right.\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3}, \left\lvert\, \begin{array}{ccc}
z= & y & \left(E_{2}\right) \\
4 x= & 4 y & \left(E_{3}\right) \\
0 y= & 0 & \left(E_{1}\right)
\end{array}\right.\right\} \\
& =\{y(1,1,1), y \in \mathbb{R}\} \\
& =\operatorname{Span}((1,1,1))
\end{aligned}
$$

Thus, $\operatorname{dim}\left(E_{-1}\right)=1 \neq m(-1)$ and A is not diagonalizable.

- Matrix B :
$\operatorname{Sp}(B)=\{-3,2\}$ with $m(-3)=2$ and $m(2)=1$. Hence, B is diagonalizable iff $\operatorname{dim}\left(E_{-3}\right)=2$.

$$
\begin{aligned}
E_{-3} & =\left\{(x, y, z) \in \mathbb{R}^{3}, \left\lvert\, \begin{array}{ccc}
5 x+5 y+5 z & =0 \\
-5 x-5 y-5 z & =0 \\
5 x+5 y+5 z=0
\end{array}\right.\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3}, z=-x-y\right\} \\
& =\left\{x(1,0,-1)+y(0,1,-1),(x, y) \in \mathbb{R}^{2}\right\} \\
& =\operatorname{Span} \underbrace{((1,0,-1),(0,1,-1))}_{\text {independent }}
\end{aligned}
$$

Thus, $\operatorname{dim}\left(E_{-3}\right)=2=m(-3)$ and B is diagonalizable.
Furthermore,

$$
\begin{aligned}
E_{2} & =\left\{(x, y, z) \in \mathbb{R}^{3}, \left\lvert\, \begin{array}{ccc}
5 y+5 z & = & 0 \\
-5 x-10 y-5 z & = & 0 \\
5 x+5 y & = & 0
\end{array}\right.\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3}, \left\lvert\, \begin{array}{ccc}
z=-y \\
x=-y & \left(E_{3}\right) \\
0 y=0 & \left(E_{2}\right)
\end{array}\right.\right\} \\
& =\{y(-1,1,-1), y \in \mathbb{R}\} \\
& =\operatorname{Span}((-1,1,-1))
\end{aligned}
$$

Thus, $P=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & -1 & -1\end{array}\right)$ and $D=\left(\begin{array}{ccc}-3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2\end{array}\right)$.

