Correction of the final exam

Exercise 1 (6 points)

An internet service provider has an hotline service, in order to assist the customers having connection problems. For a 1-hour time interval, consider the random variable

X = "Number of calls to the hotline service during this 1-hour time interval"

Assume that the numbers of calls, in two non-overlapping time intervals, are independent random variables. We accept without proof that, in this hypothesis, there exists $\lambda > 0$ such that $X \leadsto \operatorname{Poisson}(\lambda)$, that is,

$$X(\Omega) = \mathbb{N}$$
 and $\forall n \in \mathbb{N}, P(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$

The hotline service is opened 10 hours each day (from 9:00 to 19:00), and the value of λ is the same for all 1-hour time interval contained in the opening hours.

1. Find the generating function $G_X(t)$ of variable X. First, express $G_X(t)$ as a power series, then express it with the usual functions.

$$G_X(t) = \sum_{n=0}^{+\infty} P(X=n)t^n = \sum_{n=0}^{+\infty} e^{-\lambda} \frac{\lambda^n}{n!} t^n = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{(\lambda t)^n}{n!}$$

Hence, $G_X(t) = e^{-\lambda} e^{\lambda t} = e^{\lambda(t-1)}$.

2. Compute the expectation and the variance of X.

$$G_X'(t) = \lambda e^{\lambda(t-1)}$$
. Thus, $\mathrm{E}(X) = G_X'(1) = \lambda$

$$G_X''(t) = \lambda^2 e^{\lambda(t-1)}$$
. Thus, $Var(X) = G_X''(1) + E(X) - E^2(X) = \lambda^2 + \lambda - \lambda^2 = \lambda$.

3. Consider a day d and the random variable

Y = "Number of calls to the hotline service during the whole day"

(a) Find the generating function G_Y of variable Y. Justify accurately.

We can split the opening hours of the service into ten 1-hour periods. For $h \in [1, 10]$, let us define

$$X_h =$$
 "Number of calls to the hotline service during period h"

Then $Y = X_1 + X_2 + \cdots + X_{10}$ and the variables X_h are independent since the 1-hour periods don't overlap.

Thus,
$$G_Y(t) = G_{X_1}(t) \times \cdots \times G_{X_{10}}(t) = e^{10\lambda(t-1)}$$
.

(b) Deduce the distribution of Y.

We deduce from question 3.a that Y is Poisson-distributed with parameter 10λ :

$$Y(\Omega) = \mathbb{N}$$
 and $\forall n \in \mathbb{N}, P(Y=n) = e^{-10\lambda} \frac{(10\lambda)^n}{n!}$

Exercise 2 (6.5 points)

Consider the linear map $f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^2 \\ P & \longmapsto & \left(P(1), P(2)\right) \end{array} \right.$

1. Let $P = aX^2 + bX + c \in \mathbb{R}_2[X]$. Write the conditions on (a, b, c) for $P \in \text{Ker}(f)$. Then find a basis of Ker(f).

$$P \in \operatorname{Ker}(f) \iff \left\{ \begin{array}{l} a+b+c &= 0 \quad \left(P(1)=0\right) \\ 4a+2b+c &= 0 \quad \left(P(2)=0\right) \\ \\ \iff \left\{ \begin{array}{l} a+b+c &= 0 \\ 3a+b &= 0 \quad \left(\operatorname{Eq}_2-\operatorname{Eq}_1\right) \\ \\ \Leftrightarrow \left\{ \begin{array}{l} b &= -3a \\ c &= -a-b=2a \end{array} \right. \end{array} \right.$$

Thus, $Ker(f) = \{a(X^2 - 3X + 2), a \in \mathbb{R}\} = Span (X^2 - 3X + 2).$

Since the family $(X^2 - 3X + 2)$ is linearly independent, it is a basis of Ker(f).

2. Find the rank of f, then Im(f).

According to the rank-nullity theorem: $\dim (\mathbb{R}_2[X]) = \dim (\operatorname{Ker}(f)) + \dim (\operatorname{Im}(f))$.

Thus, rank(f) = dim(Im(f)) = 3 - 1 = 2.

We hence get: $\operatorname{Im}(f) \subset \mathbb{R}^2$ and $\operatorname{dim}(\operatorname{Im}(f)) = \operatorname{dim}(\mathbb{R}^2) \Longrightarrow \operatorname{Im}(f) = \mathbb{R}^2$.

3. In $\mathbb{R}_2[X]$, consider the polynomials $P_1 = -X + 2$ and $P_2 = X - 1$. Compute $P_i(1)$ and $P_i(2)$ for $i \in \{1, 2\}$.

$$P_1(1) = 1, P_1(2) = 0$$
 and $P_2(1) = 0, P_2(2) = 1.$

4. Find a basis \mathcal{B} of $\mathbb{R}_2[X]$ such that the matrix of f in this basis \mathcal{B} as input basis and in the standard output basis is $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Consider the family $\mathcal{B} = (P_1, P_2, P_3 = X^2 - 3X + 2)$. This family is a basis of $\mathbb{R}_2[X]$. Furthermore, using questions 1 and 3,

$$f(P_1) = (1,0), \quad f(P_2) = (0,1)$$
 and $f(P_3) = (0,0)$

The matrix of f in this basis \mathcal{B} as input and the standard basis as output is hence the required A matrix.

5. Find the set S of all the polynomials $P \in \mathbb{R}_2[X]$ such that f(P) = (42, 1).

Let us express P in basis \mathcal{B} : $P = aP_1 + bP_2 + cP_3$ where $(a, b, c) \in \mathbb{R}^3$.

The coordinates of f(P) in the standard basis of \mathbb{R}^2 are given by $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

Thus,, f(P) = (a, b). It results that:

$$S = \{aP_1 + bP_2 + cP_3 \text{ such that } a = 42 \text{ and } b = 1\} = \{42P_1 + P_2 + cP_3, c \in \mathbb{R}\} = \{-41X + 83 + cP_3, c \in \mathbb{R}\}$$

Exercise 3 (8 points)

Consider the matrices $A = \begin{pmatrix} -1 & -1 & -2 \\ 2 & 2 & 2 \\ 2 & 1 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -4 & -2 & 4 \\ -6 & -5 & 8 \\ -6 & -4 & 7 \end{pmatrix}$.

1. Compute in factorized form the characteristic polynomials of A and B. Check that the eigenvalues of A are 1 and 2, and that the eigenvalues of B are 0 and -1.

$$P_A[X] = \begin{vmatrix} -1 - X & -1 & -2 \\ 2 & 2 - X & 2 \\ 2 & 1 & 3 - X \end{vmatrix} = \begin{vmatrix} 1 - X & -1 & -2 \\ 0 & 2 - X & 2 \\ -1 + X & 1 & 3 - X \end{vmatrix} \quad (C_1 \leftarrow C_1 - C_3)$$
$$= \begin{vmatrix} 1 - X & -1 & -2 \\ 0 & 2 - X & 2 \\ 0 & 0 & 1 - X \end{vmatrix} \quad (R_3 \leftarrow R_3 + R_1)$$
$$= (1 - X)^2 (2 - X)$$

Furthermore,

$$P_B[X] = \begin{vmatrix} -4 - X & -2 & 4 \\ -6 & -5 - X & 8 \\ -6 & -4 & 7 - X \end{vmatrix} = \begin{vmatrix} -4 - X & -2 & 4 \\ -6 & -5 - X & 8 \\ 0 & 1 + X & -1 - X \end{vmatrix} \quad (R_3 \leftarrow R_3 - R_2)$$
$$= \begin{vmatrix} -4 - X & 2 & 4 \\ -6 & 3 - X & 8 \\ 0 & 0 & -1 - X \end{vmatrix} \quad (C_2 \leftarrow C_2 + C_3)$$
$$= (-1 - X) \begin{vmatrix} -4 - X & 2 \\ -6 & 3 - X \end{vmatrix}$$

Hence, $P_B(X) = (-1 - X)[(-4 - X)(3 - X) + 12] = -(1 + X)[X^2 + X] = -X(X + 1)^2$.

2. Are matrices A and B diagonalizable in $\mathcal{M}_3(\mathbb{R})$? If they are, find P and D. Be accurate in your redaction.

Matrix A: P_A is split, $Sp(A) = \{1, 2\}$ with m(1) = 2 and m(2) = 1. Thus, A is diagonalizable if and only if $dim(E_1) = 2$.

$$E_{1} = \left\{ (x, y, z) \in \mathbb{R}^{3}, \begin{vmatrix} -2x - y - 2z & = & 0 \\ 2x + y + 2z & = & 0 \\ 2x + y + 2z & = & 0 \end{vmatrix} \right\}$$

$$= \left\{ (x, y, z) \in \mathbb{R}^{3}, y = -2x - 2z \right\}$$

$$= \left\{ (x, -2x - 2z, z), (x, z) \in \mathbb{R}^{2} \right\}$$

$$= \left\{ x(1, -2, 0) + z(0, -2, 1), (x, z) \in \mathbb{R}^{2} \right\} = \operatorname{Span} \left((1, -2, 0), (0, -2, 1) \right)$$

Hence, $\dim(E_1) = 2$ and A is diagonalizable.

$$E_{2} = \left\{ (x, y, z) \in \mathbb{R}^{3}, \begin{vmatrix} -3x - y - 2z & = & 0 \\ 2x + 2z & = & 0 \\ 2x + y + z & = & 0 \end{vmatrix} \right\}$$

$$= \left\{ (x, y, z) \in \mathbb{R}^{3}, \begin{vmatrix} -3x - y - 2z & = & 0 \\ 2x + 2z & = & 0 \\ -x - z & = & 0 \end{vmatrix} \right. \quad (\text{Eq}_{3} \leftarrow \text{Eq}_{3} + \text{Eq}_{1}) \right\}$$

$$= \left\{ (x, y, z) \in \mathbb{R}^{3}, \begin{vmatrix} z & = & -x \\ y & = & -3x - 2z = -x \end{vmatrix} \right\}$$

$$= \left\{ x(1, -1, -1), x \in \mathbb{R} \right\} = \text{Span} \left((1, -1, -1) \right)$$

Finally,
$$P = \begin{pmatrix} 1 & 0 & 1 \\ -2 & -2 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$
 and $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

<u>Matrix B:</u> P_B is split, $Sp(A) = \{0, -1\}$ with m(-1) = 2 and m(0) = 1. Thus, B is diagonalizable if and only if $dim(E_{-1}) = 2$.

$$E_{-1} = \begin{cases} (x, y, z) \in \mathbb{R}^3, & -3x - 2y + 4z = 0 \\ -6x - 4y + 8z = 0 \\ -6x - 4y + 8z = 0 \end{cases}$$

$$= \{(x, y, z) \in \mathbb{R}^3, y = -\frac{3}{2}x + 2z\}$$

$$= \{(x, -\frac{3}{2}x + 2z, z), (x, z) \in \mathbb{R}^2\}$$

$$= \{x(1, -3/2, 0) + z(0, 2, 1), (x, z) \in \mathbb{R}^2\} = \operatorname{Span} ((1, -3/2, 0), (0, 2, 1))$$

Hence, $\dim(E_{-1}) = 2$ and B is diagonalizable.

$$E_{0} = \begin{cases} (x, y, z) \in \mathbb{R}^{3}, & -4x - 2y + 4z = 0 \\ -6x - 5y + 8z = 0 \\ -6x - 4y + 7z = 0 \end{cases}$$

$$= \begin{cases} (x, y, z) \in \mathbb{R}^{3}, & y - z = 0 \\ -6x - 4y + 7z = 0 \end{cases} \quad (\text{Eq}_{1} \leftarrow \frac{3}{2}\text{Eq}_{1} - \text{Eq}_{3}) \\ y - z = 0 \quad (\text{Eq}_{2} \leftarrow \text{Eq}_{3} - \text{Eq}_{2}) \end{cases}$$

$$= \begin{cases} (x, y, z) \in \mathbb{R}^{3}, & y = z \\ -6x - 4y + 7z = 0 \end{cases}$$

$$= \begin{cases} (x, y, z) \in \mathbb{R}^{3}, & y = z \\ 6x = 3z \end{cases}$$

$$= \begin{cases} x(1, 2, 2), & x \in \mathbb{R} \end{cases} = \text{Span} ((1, 2, 2))$$
Finally,
$$P = \begin{pmatrix} 1 & 0 & 1 \\ -3/2 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercise 4: a theorem's proof (6.5 points)

Let E be a finite-dimensional vector space, F and G two linear subspaces of E of non-zero dimensions n and p.

Consider $\mathcal{B}_1 = (e_1, \dots, e_n)$ a basis of F and $\mathcal{B}_2 = (\varepsilon_1, \dots, \varepsilon_p)$ a basis of G.

Assume that the concatenated family $\mathcal{B} = (e_1, \dots, e_n, \varepsilon_1, \dots, \varepsilon_p)$ is a basis of E.

1. What can be said about F and G in this case?

They are supplementary in E: $E = F \oplus G$.

2. Prove this property.

Assume that $\mathcal{B} = (e_1, \dots, e_n, \varepsilon_1, \dots, \varepsilon_p)$ is a basis of E. Let us show that $E = F \oplus G$.

(a) $F \cap G = \{0_E\}.$

To start with, it is evident that $\{0_E\} \subset F \cap G$. Indeed, since F and G are linear subspaces of E, they both contain the zero vector.

Let us show that $F \cap G \subset \{0_E\}$: let $u \in F \cap G$. Then:

$$\left. \begin{array}{c} u \in F \\ F = \operatorname{Span}(\mathcal{B}_1) \end{array} \right\} \Longrightarrow \exists (a_1, \cdots, a_n) \in \mathbb{R}^n, u = a_1 e_1 + \cdots + a_n e_n \\$$

Similarly,

$$\left. \begin{array}{l} u \in G \\ G = \operatorname{Span}(\mathcal{B}_2) \end{array} \right\} \Longrightarrow \exists (b_1, \cdots, b_p) \in \mathbb{R}^p, u = b_1 \varepsilon_1 + \cdots + b_p \varepsilon_p \end{array}$$

By substracting these two expressions of u, we get:

$$0_E = a_1 e_1 + \dots + a_n e_n - b_1 \varepsilon_1 - \dots - b_p \varepsilon_p$$

Since the family \mathcal{B} is independent, we deduce that $(a_1, \dots, a_n, -b_1, \dots, -b_p) = (0, \dots, 0)$.

This leads to: $u = a_1e_1 + \cdots + a_ne_n = 0_E$.

(b) E = F + G.

To start with, it is evident that $F + G \subset E$: since F and G are linear subspaces of E, F + G is a linear subspace of E too.

Let us prove that $E \subset F + G$. Let $u \in E$ and let's show that $u \in F + G$.

The family \mathcal{B} is a basis of E. It is hence a spanning family. Thus, there exists $(a_1, \dots, a_n, b_1, \dots, b_p) \in \mathbb{R}^{n+p}$ such that

$$u = a_1e_1 + \cdots + a_ne_n + b_1\varepsilon_1 + \cdots + b_n\varepsilon_n$$

ЕРІТА

Then

$$\begin{cases}
(e_1, \dots, e_n) \in F^n & \Longrightarrow a_1 e_1 + \dots + a_n e_n \in F \\
(\varepsilon_1, \dots, \varepsilon_p) \in G^p & \Longrightarrow b_1 \varepsilon_1 + \dots + b_p \varepsilon_p \in G
\end{cases}$$

Finally,

$$u = \underbrace{a_1 e_1 + \dots + a_n e_n}_{\in F} + \underbrace{b_1 \varepsilon_1 + \dots + b_p \varepsilon_p}_{\in G} \Longrightarrow u \in F + G$$

Exercise 5: building a symmetry (8 points)

Let us work in the vector space $E = \mathbb{R}^3$ and its standard basis \mathcal{B} . Consider the linear subspaces

$$F = \{(x, y, z) \in E, x - y + 2z = 0\} \quad \text{and} \quad G = \left\{(x, y, z) \in E, \begin{vmatrix} x + y + z & = & 0 \\ x - y + z & = & 0 \end{vmatrix}\right\}$$

1. Find a basis of F and a basis of G.

$$\begin{split} F &= \left\{ (x,y,z) \in \mathbb{R}^3, \, y = x + 2z \right\} \\ &= \left\{ (x,x+2z,z), \, (x,z) \in \mathbb{R}^2 \right\} \\ &= \left\{ x(1,1,0) + z(0,2,1), \, (x,z) \in \mathbb{R}^2 \right\} = \mathrm{Span} \left((1,1,0), (0,2,1) \right) \end{split}$$

The family ((1,1,0),(0,2,1)) is also independent, it is hence a basis of F.

$$G = \left\{ (x, y, z) \in \mathbb{R}^3, \middle| \begin{array}{l} x + y + z & = & 0 \\ x - y + z & = & 0 \end{array} \right\}$$

$$= \left\{ (x, y, z) \in \mathbb{R}^3, \middle| \begin{array}{l} x + y + z & = & 0 \\ 2y & = & 0 \end{array} \right. \quad (\text{Eq}_2 \leftarrow \text{Eq}_1 - \text{Eq}_2) \right\}$$

$$= \left\{ (x, y, z) \in \mathbb{R}^3, \middle| \begin{array}{l} z & = & -x \\ y & = & 0 \end{array} \right\}$$

$$= \left\{ x(1, 0, -1), x \in \mathbb{R} \right\} = \text{Span} \left((1, 0, -1) \right)$$

The family ((1,0,-1)) is also independent, it is hence a basis of G.

2. Show that $E = F \oplus G$.

It is sufficient to show that the family $\mathcal{F} = (\varepsilon_1 = (1, 1, 0), \varepsilon_2 = (0, 2, 1), \varepsilon_3 = (1, 0, -1))$ (the concatenation of the bases of F and G) is a basis E.

 \mathcal{F} is independent: for all $(a, b, c) \in \mathbb{R}^3$,

$$a\varepsilon_{1} + b\varepsilon_{2} + c\varepsilon_{3} = 0_{E} \Longrightarrow \begin{cases} a + c & = 0 \\ a + 2b & = 0 \\ b - c & = 0 \end{cases} \Longrightarrow \begin{cases} a + c & = 0 \\ 2b - c & = 0 \\ b - c & = 0 \end{cases} (Eq_{2} - Eq_{1})$$

$$b - c & = 0$$

$$\Longrightarrow \begin{cases} a + c & = 0 \\ 2b - c & = 0 \\ -b & = 0 \end{cases} (Eq_{3} - Eq_{2})$$

 \mathcal{F} is a spanning family:

$$\mathcal{F}$$
 is independent $\operatorname{Card}(\mathcal{F}) = \dim(E)$ $\Longrightarrow \operatorname{Span} \mathcal{F} = E$

Thus, $E = F \oplus G$.

3. According to the previous question, we know that for all $u \in E$, there exists a unique $(v, w) \in F \times G$ such that u = v + w. Consider the endomorphism $s : u \longmapsto v - w$. FINAL EXAM S3 - CORRECTION - December 2022 ЕРІТА

(a) Assume that $u \in F$. What is the value of s(u)?

If
$$u \in F$$
, then $u = \underbrace{u}_{\in F} + \underbrace{0_E}_{\in G} \Longrightarrow v = u$ and $w = 0_E$.

Hence,
$$s(u) = v - w = u - 0_E = u$$
.

(b) Assume that $u \in G$. What is the value of s(u)?

If
$$u \in G$$
, then $u = \underbrace{0_E}_{\in F} + \underbrace{u}_{\in G} \Longrightarrow v = 0_E$ and $w = u$.

Hence
$$s(u) = v - w = 0_E - u = -u$$
.

(c) Let \mathcal{B}' be the concatenation of the bases of F and G that you got at question 1. We know that it is a basis of E. What is the matrix of s in basis \mathcal{B}' as input and output basis. This matrix is denoted by A'.

The basis \mathcal{B}' is the family $\mathcal{F} = (\varepsilon_1 = (1, 1, 0), \varepsilon_2 = (0, 2, 1), \varepsilon_3 = (1, 0, -1))$ defined at previous question. Then:

$$\varepsilon_1 \in F \Longrightarrow s(\varepsilon_1) = \varepsilon_1, \qquad \varepsilon_2 \in F \Longrightarrow s(\varepsilon_2) = \varepsilon_2 \qquad \text{and} \qquad \varepsilon_3 \in G \Longrightarrow s(\varepsilon_3) = -\varepsilon_3$$

We hence get:
$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(d) Let A be the matrix of s in the standard basis as input and output basis. Write the formula which enables one to compute A. We don't ask you to do the computation.

Consider the transition matrix from
$$\mathcal{B}$$
 to \mathcal{B}' : $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & -1 \end{pmatrix}$.

Then we know that $A' = P^{-1}AP$, which leads to: $A = PA'P^{-1}$.

Exercise 6: Probabilities (5 points)

Let $p \in]0,1[$. Consider a random variable X which is geometric-distributed with parameter p.

1. Write explicitly the distribution of X.

$$X(\Omega) = \mathbb{N}^* \qquad \text{and} \qquad \forall n \in \mathbb{N}^*, \ P(X=n) = p(1-p)^{n-1} = pq^{n-1} \ (\text{setting} \ q = 1-p)$$

- 2. Let $(k, n) \in (\mathbb{N}^*)^2$.
 - (a) Show that $P(X>n) = q^n$ where q = 1 p.

Hint: you can start by writing $P(X>n) = \sum_{k=1}^{+\infty} P(X=k)$ or, alternatively, $P(X>n) = 1 - \sum_{k=1}^{n} P(X=k)$.

$$P(X>n) = \sum_{k=n+1}^{+\infty} P(X=k) = \sum_{k=n+1}^{+\infty} pq^{k-1} = pq^n \sum_{m=0}^{+\infty} q^m$$
 by setting $m = k-1-n$

Thus,

$$P(X>n) = pq^n \times \frac{1}{1-q} = q^n$$
 since $1-q=p$

(b) Explain why $P(X=n+k \cap X>n) = P(X=n+k)$.

If the property "X=n+k" is true, then the property "X>n" is also true. In other words, if we define the sets:

$$A = \{ \omega \in \Omega, X(\omega) = n + k \}$$
 and $B = \{ \omega \in \Omega, X(\omega) > n \}$

then:
$$A \subset B \Longrightarrow A \cap B = A \Longrightarrow P(A \cap B) = P(A)$$
.

ЕРІТА

(c) Compute the conditional probability $P(X=n+k \mid X>n)$. Compare your result with the value of P(X=k).

According to the definition of a conditional probability, $P(X=n+k \mid X>n) = \frac{P(X=n+k \cap X>n)}{P(X>n)}$

Thus, using questions 2.a and 2.b.,

$$P(X=n+k \mid X>n) = \frac{P(X=n+k)}{q^n} = \frac{pq^{n+k-1}}{q^n} = pq^{k-1}$$

We can see that $P(X=n+k \mid X>n) = P(X=k)$.

(d) Explain why we say that the distribution of X is "memoryless".

Let us refer to the example of the hacker sending phishing emails to get Visa card numbers, where X is the number of messages he sends before getting a first answer.

If, after sending n messages, he still got no answers, we know that X>n. Then the probability of getting his first answer at the k^{th} next message is $P(X=n+k\mid X>n)$.

Yet, this probability is the same as P(X=k). That is to say, the fact that he had no answers at his first n messages does not change the hacker's situation: it is the same as the initial situation.

3. Consider a random variable Y such that

$$Y(\Omega) = \mathbb{N}^*$$
 and $\forall (k, n) \in (\mathbb{N}^*)^2$, $P(Y=n+k \mid Y>n) = P(Y=k)$

Let (p_n) be the sequence defined for all $n \in \mathbb{N}^*$ by: $p_n = P(Y=n)$.

(a) Express P(Y>1) as a function of p_1 .

Since $Y(\Omega) = \mathbb{N}^*$, the complement of "Y>1" is "Y=1". Hence, $P(Y>1) = 1 - P(Y=1) = 1 - p_1$.

(b) By using the events "Y>1", "Y=1" and "Y=2", express $\frac{p_2}{n_1}$ as a function of p_1 .

By writing the hypothesis in the case k = n = 1, we get:

$$\frac{P(Y=1+1 \cap Y>1)}{P(Y>1)} = P(Y=1) \Longrightarrow \frac{p_2}{1-p_1} = p_1 \Longrightarrow \frac{p_2}{p_1} = 1-p_1$$

(c) Similarly, for all $n \in \mathbb{N}^*$, by using the events "Y > 1", "Y = n" and "Y = n + 1", find a simple expression of $\frac{p_{n+1}}{n}$.

Using the hypothesis, we get:

$$\frac{P(Y=1+n \cap Y>1)}{P(Y>1)} = P(Y=n) \Longrightarrow \frac{p_{n+1}}{1-p_1} = p_n \Longrightarrow \frac{p_{n+1}}{p_n} = 1-p_1$$

(d) Deduce the value of p_n as a function of n. How do we call the distribution of Y?

The sequence (p_n) is a geometric sequence with common ratio $1-p_1$. Thus, for all $n \in \mathbb{N}^*$,

$$p_n = p_1(1-p_1)^{n-1}$$

The random variable Y is hence geometric-distributed with parameter p_1 .

The only "memoryless" distributions of random variables taking their values in \mathbb{N}^* are the geometric distributions.