EPITA

Mathematics

Final exam S3

December 2021

Duration: 3 hours

Name:	
First name:	
Class:	
MARK:	
Instructions:	

- Write your answers on the stapled sheets provided for answering. No other sheet will be corrected.
- Please, do not use lead pencils for answering.

Exercise 1 (3.5 points)

In $E = \mathbb{R}^3$ together with its standard basis \mathcal{B} , consider the family $\mathcal{F} = \{\varepsilon_1 = (1, -1, 2), \varepsilon_2 = (2, 1, -3), \varepsilon_3 = (4, -1, 1)\}.$

- 1. Is this family a basis of E? If not, extract a maximal independent sub-family and complete it to get a basis of E. The basis that you get will be denoted by \mathcal{B}' .

- 2. Find the coordinates in \mathcal{B}' of the vector u = (3, 3, -8).
 - Find the coordinates in \mathcal{D} of the vector u=(3,3,-3).
- 3. Write the transition matrix from the standard basis $\mathcal B$ to the basis $\mathcal B'$.

Exercise 2 (3.5 points)

Let $f \in \mathcal{L}(\mathbb{R}^3)$ be defined by its matrix in the standard basis as input and output basis: $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ -3 & 3 & -2 \end{pmatrix}$

1. Show that f is a projector.

3. Find a basis of Im(f).

4. Write accurately the rank-nullity theorem and check that your results are consistent with this theorem.

5. Let \mathcal{B}' be the concatenation of the bases of $\operatorname{Ker}(f)$ and of $\operatorname{Im}(f)$ that you have found in questions 2 and 3. We accept without proof that \mathcal{B}' is a basis of \mathbb{R}^3 .

Write the matrix of f in \mathcal{B}' as input and output basis.

Exercise 3 (5 points)

Consider the linear map $f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^3 \\ Q & \longmapsto & \left(Q(0), \, Q(1), \, Q(2)\right) \end{array} \right.$

1. Find the matrix of f in the standard bases $\{1, X, X^2\}$ as input and $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ as output basis. Let us denote this matrix by A.

2. In $\mathbb{R}_2[X]$ consider the polynomials $Q_0 = \frac{(X-1)(X-2)}{2}$, $Q_1 = -X(X-2)$ and $Q_2 = \frac{X(X-1)}{2}$.

(a) Write the values of $Q_i(0)$, $Q_i(1)$ and $Q_i(2)$ for each $i \in \{0, 1, 2\}$ (no need to show all the details of your computations).

(b) Show that the family $\mathcal{B}' = \{Q_0, Q_1, Q_2\}$ is a basis of $\mathbb{R}_2[X]$.

[this frame continues on next page]

Find the matrix of f in \mathcal{B}' as input basis and the standard basis as output basis. This matrix is denoted \mathbb{R}^3 becomes the matrix of f^{-1} in the standard basis of \mathbb{R}^3 as input basis, \mathcal{B}' as output basis, \mathcal{B}' as output basis, \mathcal{B}' as input basis, \mathcal{B}' as output basis of \mathbb{R}^3 as input basis, \mathcal{B}' as output bases.						
Show that f is bijective and write the matrix of f^{-1} in the standard basis of \mathbb{R}^3 as input basis, \mathcal{B}' as outp						
Show that f is bijective and write the matrix of f^{-1} in the standard basis of \mathbb{R}^3 as input basis, \mathcal{B}' as output						
Show that f is bijective and write the matrix of f^{-1} in the standard basis of \mathbb{R}^3 as input basis, \mathcal{B}' as outp						
Show that f is bijective and write the matrix of f^{-1} in the standard basis of \mathbb{R}^3 as input basis, \mathcal{B}' as outp						
Show that f is bijective and write the matrix of f^{-1} in the standard basis of \mathbb{R}^3 as input basis, \mathcal{B}' as outp						
Show that f is bijective and write the matrix of f^{-1} in the standard basis of \mathbb{R}^3 as input basis, \mathcal{B}' as outp						
	Find the matr	$\frac{\operatorname{rix} \text{ of } f \text{ in } \mathcal{B}' \text{ as input}}{f}$	ut basis and the	standard basis as o	output basis. This r	natrix is denoted by
duce the matrix of f^{-1} in the standard bases as input and output bases.	Show that f i	s bijective and write	the matrix of f^-	in the standard	basis of \mathbb{R}^3 as input	basis, \mathcal{B}' as output
duce the matrix of f^{-1} in the standard bases as input and output bases.						
duce the matrix of f^{-1} in the standard bases as input and output bases.						
duce the matrix of f^{-1} in the standard bases as input and output bases.						
duce the matrix of f^{-1} in the standard bases as input and output bases.						
duce the matrix of f^{-1} in the standard bases as input and output bases.						
duce the matrix of f^{-1} in the standard bases as input and output bases.						
duce the matrix of f^{-1} in the standard bases as input and output bases.						
duce the matrix of f^{-1} in the standard bases as input and output bases.						
	duce the matr	ix of f^{-1} in the stan	dard bases as in	out and output bas	ses.	

Exercise 4 (4.5 points)

Consider the two numerical sequences (x_n) and (y_n) defined by:

$$x_0 = 3$$
, $y_0 = -2$ and $\forall n \in \mathbb{N}$,
$$\begin{cases} x_{n+1} = \frac{3}{4}x_n - \frac{1}{8}y_n \\ y_{n+1} = -\frac{1}{2}x_n + \frac{3}{4}y_n \end{cases}$$

In the vector space \mathbb{R}^2 together with its standard basis $\mathcal{B} = \{(1,0), (0,1)\}$, let us define the sequence (u_n) by: $u_n = (x_n, y_n)$. For example, $u_0 = (3, -2)$.

1. Find $f \in \mathcal{L}(\mathbb{R}^2)$ such that for every $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

2. Consider the following basis of \mathbb{R}^2 : $\mathcal{B}' = \{\varepsilon_1 = (1, -2), \varepsilon_2 = (1, 2)\}$. Write the transition matrix from \mathcal{B} to \mathcal{B}' . Then find the coordinates of u_0 in \mathcal{B}' .

3. Write the matrix of f in basis \mathcal{B}' as input and output basis.

4. For every $n \in \mathbb{N}$, let $X'_n = \begin{pmatrix} x'_n \\ y'_n \end{pmatrix}$ be the column matrix containing the coordinates of u_n in basis \mathcal{B}' . Express X'_{n+1} as a function of X'_n .

5. Deduce the coordinates of u_n in the basis \mathcal{B}' , then $\lim_{n\to+\infty} x_n$ and $\lim_{n\to+\infty} y_n$.

Exercise 5 (4 points)

Let $A = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 2 & 0 \\ 5 & 2 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & -2 & 2 \\ 10 & -9 & 10 \\ 6 & -6 & 7 \end{pmatrix}$

1. Find the characteristic polynomials of A and B, in a factorized form. Check that the eigenvalues of A are 1 and 2, and that those of B are -1 and 1.

Check that the eigenvalues of A are 1 and 2, and that those of B as

[this frame continues on next page]

2.	$\operatorname{Are}\operatorname{tl}$	${ m he\ matrices}$.	A and	B	diagonalizable	$_{ m in}$	$\mathcal{M}_3(\mathbb{R}$)?	If $ h$	ey are,	find	$ h\epsilon$	e matrices	P	and	D	
----	---------------------------------------	-----------------------	--------	---	----------------	------------	----------------------------	----	---------	---------	------	--------------	------------	---	-----	---	--

N.B.: the dimension of each required eigen subspace must be determined by exhibiting a basis. The latter basis must be deduced from a clear reasoning, and not by randomly picking particular values.

[this frame continues on next page]