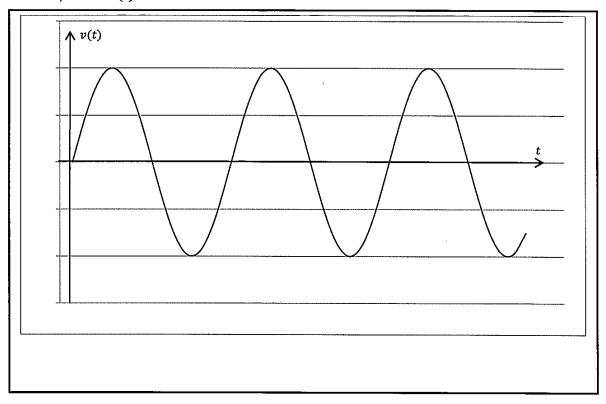
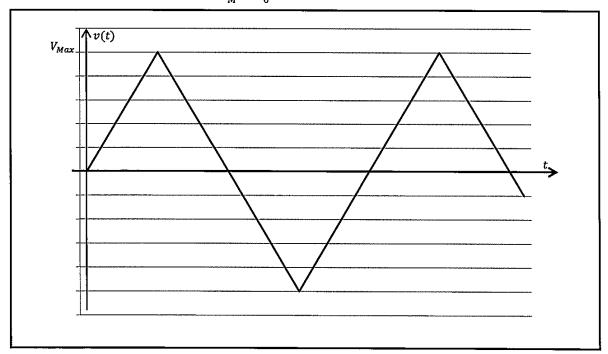
EPITA / InfoS3	December 2017
NAME: FIRSTNAME:	Group:


Electronics Final Exam

Calculators and extra-documents are not allowed. The marking scale is given as a rough guide.


Please answer only on exam sheets. If more space is needed, write on the back.

Consider th The two so The diod a)	1. Rectifier with middle point (5 points) the following circuit: v v v v v v v v
b)	Meanwhile, what is the expression of u ?
	When the sources provide a negative voltage $(\frac{T}{2} \le t \le T)$, which diode is turned on? Justify your answer.
d)	Meanwhile, what is the expression of u ?

e) Draw u(t).

f) One now considers the threshold model for the diodes. Sketch the shape of u(t), and justify your answer. We will denote V_0 the threshold voltage for each diode and we will assume that $V_M > V_0$.

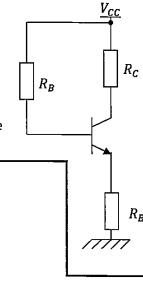
Exercise 2. Zéner's diode (4 points)

Consider the following diagram. $V \in \mathbb{R}$

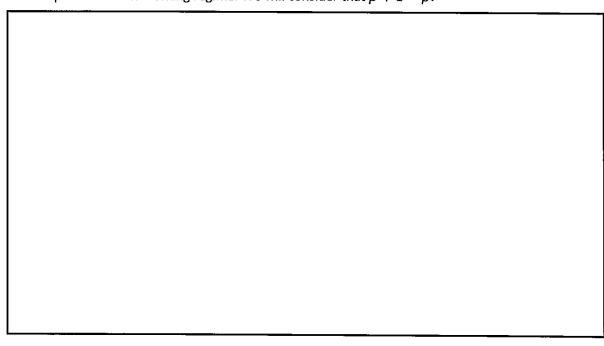
Draw the transfer characteristic, namely U=f(V). The diode will be replaced by its real model.

 $V \cap \mathbb{R}$

You will explicitly write the equations of each part of the characteristic. We will denote V_0 the threshold voltage, r_D the internal resistance of the diode for direct polarization, V_Z the Zéner threshold voltage and r_Z the internal resistance of the diode for reverse polarization.


Exercise 3. Polarization (4 points)

Consider the following circuit.


Are given:

$$R_C=4k\Omega$$
, $R_E=1k\Omega$, $V_{CC}=10V$, $\beta=100$, $V_{BE}=0.6V$ if the junction Base-Emitter is turned on.

1. Determine the saturation current $I_{\mathcal{C}_{SAT}}$ of the transistor (which is the collector current when the transistor works in saturation regime).

2. Deduce the minimal value of the resistance R_B such that the transistor is linearly polarized in its working regime. We will consider that $\beta + 1 \approx \beta$.

Exercise 4.	Polarization with back reaction to the collector (5 points +1)	$\underline{v_{cc}}$
Conside	er the following circuit:	\prod_{R_c}
(namely and tho	nine the polarization point of the transistor y the expressions of the currents I_B , I_C et I_E , ose of the voltages V_{BE} , V_{BC} et V_{CE}). er that $\beta+1 \approx \beta$.	
		/////
Bonus Question	<u>n</u> : By assuming that $V_{BE}=0.7V$ if the junction Base-Emitter is turned on that $V_{CE_{SAT}}=0.2V$, can the transistor be saturated? Why? Remember the transistor works in linear regime if $V_{CE}>V_{CE_{SAT}}$.	n and r that

<u>Exercise 5.</u> MCQ (2 points – No negative point)

- **Q1.** Doping increases the occurrence of thermogeneration.
 - a- TRUE

- b- FALSE
- Q2. If one takes some Silicium as semiconductor and then dopes it with Silicium, one gets:
 - a- a N-Doping

c- a NP-Doping

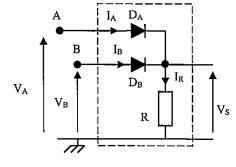
b- a P-Doping

d- no doping

- Q3. In an intrinsic semiconductor, the number of free electrons is:
 - a- equal to the hole number

c- smaller than the hole number

b- larger than the hole number


d- none of the above

- **Q4.** Consider the following circuit. Which type of logic gate does this circuit produce?
 - a- AND

c- NOT AND

b- OR

d- NOT OR

