Partiel 1 - Electronics

Calculators and documents are not allowed. The number of points per question is indicative. Answers to be written on this document only

a) What is then the expression of ?

b) When v(t) is negative $(T/2 \le t \le T)$, which of the diodes are in forward bias? Explain your answer.

c) What is then the expression of ?

d) Using a different colour, plot u(t) below.

e) We now replace diodes with their model with threshold voltage. Plot u(t), explaining your answer. We define V_0 as the threshold voltage for each diode.

U

R

Exercise 2. Zener diode (5 points)

We consider the following circuit. $\underline{V \in \mathbb{R}}$

Plot the transfer characteristic, ie U = f(V) by replacing the diode with its model with threshold voltage.

Give the equations of each part of the characteristic. We give V_0 the forward voltage threshold, r_D the internal resistance of the diode in forward bias, V_Z the Zener threshold and r_Z the internal resistance of the diode in reverse bias.

Exercise 3. Transistor biasing (3 points)

We consider the following circuit. We assume : $R_{C} = 4k\Omega, V_{CC} = 10V,$ $\beta = 100, V_{BE} = 0.6V$ if the base-emitter junction is in forward bias.

1. Give the saturation current $I_{C_{SAT}}$ of the transistor.

2. Give the minimum value of the resistance R_B allowing the transistor biasing to be in its active gain region of operation.

Exercise 4. Common Emitter Amplifier (7 points)

We consider the following amplifier :

- Capacitors are assumed to be coupling or bypass capacitors.
- v_g is the sinusoidal voltage delivered by the source, which has an internal resistor $R_g = 600\Omega$, with a maximum amplitude 50 mV and an angular frequency ω .
- v is the sinusoidal voltage at amplifier input
- u is the sinusoidal voltage at amplifier output
- $R_B = 200k\Omega$, $R_C = 1k\Omega$, $R_E = 1k\Omega$, $R_u = 10k\Omega$, $V_{CC} = 10V$ <u>Transistor characteristics</u>: $\beta = 100$, $V_{BE} = 0.7V$ when the base-emitter junction is in forward bias and $V_{CE_{SAT}} = 0,2V$

Transistor biasing (5.5 points) Question 1

a. What is the use of coupling capacitors ?

b. Give the equivalent circuit in DC current (biasing circuit)

c. Assuming that the transistor biasing is such that the previous circuit is a good amplifier, determine the currents I_{B0} , I_{C0} , and the votages V_{BE0} and V_{CE0} . Give the expressions first before calculating the values of these quantities. Assume $\beta + 1 \approx \beta$.

<u>Question 2</u> Small signal (1.5 points)

Give the equivalent circuit in AC current (small signal mode).

BONUS : Expressing v and u as functions of i_b , give the expression of the voltage gain $A_v = \left\| \frac{u}{v} \right\|$. (assume that $1 + \beta \approx \beta$ and neglect the transistor output resistance)