## Final Exam S3 <br> Computer Architecture

Duration: 1 hr. 30 min.

## Exercise 1 (9 points)

All questions in this exercise are independent. Except for the output registers, none of the data or address registers must be modified when the subroutine returns. A string of characters always ends with a null character (the value zero). A blank character is either a space character or a tab character.

1. Write the IsBlank subroutine that determines if a character is blank (i.e. if it is a space or a tab character).
Input : D1.B holds the ASCII code of the character to test.
Output : If the character is blank, D0.L returns 0. If the character is not blank, D0.L returns 1.

Tip: The ASCII code of the tab character is 9 .
2. Write the BlankCount subroutine that returns the number of blank characters in a string. To know if a character is blank, use the IsBlank subroutine.
Input : A0.L points to a string of character.
Output : D0.L returns the number of blank characters in the string.

## Tips:

- Use D2 as a blank-character counter (because D0 is used by IsBlank).
- Then, copy D2 into D0 before returning from the subroutine.

3. Write the BlankToUnderscore subroutine that converts the blank characters in a string into underscore characters. To know if a character is blank, use the IsBlank subroutine.
Input : A0.L points to a string of characters.
Output : The blank characters of the string are replaced by the « $\qquad$ » character.

## Exercise 2 (4 points)

Complete the table shown on the answer sheet. Write down the new values of the registers (except the PC) and memory that are modified by the instructions. Use the hexadecimal representation. Memory and registers are reset to their initial values for each instruction.

| Initial values: | $D 0=\$ 0004 F F F D$ | $A 0=\$ 00005000$ | $P C=\$ 00006000$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | D1 $=\$$ FFFF000A | $A 1=\$ 00005008$ |  |  |  |
|  | D2 $=\$ F F F F F F F E$ | $A 2=\$ 00005010$ |  |  |  |
|  |  |  |  |  |  |
|  | $\$ 005000$ | 54 | AF | 18 | B9 |

## Exercise 3 (3 points)

Complete the table shown on the answer sheet. Give the result of the additions and the values of the $\mathbf{N}, \mathbf{Z}$, $\mathbf{V}$ and $\mathbf{C}$ flags.

## Exercise 4 (4 points)

Let us consider the following program:

```
Main move.l #$44AA77FF,d7
next1 moveq.l #1,d1
    tst.w d7
    bmi next2
    moveq.l #2,d1
next2 clr.l d2
loop2 addq.l #1,d2
    subq.b #1,d0
    bne loop2
next3 clr.l d3
    move.w #$1234,d0
loop3 addq.l #1,d3
    dbra d0,loop3 ; DBRA = DBF
next4 moveq.l #1,d4
    cmp.b #$70,d7
    blt quit
    moveq.l #2,d4
quit
    illegal
```

Complete the table shown on the answer sheet.

Computer Architecture－EPITA－S3－2016／2017
EASy68K Quick Reference v1．8 http：／／www．wowgwep．com／EASy68K．htm Copyright © 2004－2007 By：Chuck Kelly

| Opcode | Size | Dperand | CLR | Effective Addres |  |  |  | urce，d＝destination，e＝either，i＝displacement |  |  |  |  |  |  |  | Uperation | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BWL | s．d | XNzVC | Dn | An | （An） | （An）＋ | －（An） | （iAn） | （iAn，Rn） | abs．W | abs．L | （i．，P） | （i，．PC，Rn） | \＃n |  |  |
| ABCD | B | $\begin{aligned} & \text { Dy, Dx } \\ & -(A y) .-(A x) \end{aligned}$ | ＊U＊U＊ | － |  | － | － | e | － | － | － |  | － |  | － | $\begin{aligned} & D y_{10}+D_{10}+X \rightarrow \mathrm{Dx}_{10} \\ & -(\mathrm{Ay})_{10}+-(\mathrm{Ax})_{10}+X \rightarrow-(A x)_{10} \end{aligned}$ | Add BCD source and eXtend bit to destination．BCD result |
| $\mathrm{ADD}^{4}$ | BWL | $\begin{aligned} & \text { s,Dn } \\ & \text { Dn,d } \end{aligned}$ | ＊＊ | $\left\lvert\, \begin{array}{l\|l} \mathrm{e} \\ \mathrm{e} \end{array}\right.$ | $\begin{array}{\|c} \mathrm{s} \\ \mathrm{~d}^{4} \\ \hline \end{array}$ | $\begin{aligned} & \text { s } \\ & \text { d } \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \text { s } \\ & \text { d } \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \end{aligned}$ | s | s | $s^{4}$ | $\begin{aligned} & \mathrm{s}+\mathrm{Dn}_{\mathrm{n}} \rightarrow \mathrm{Dn}_{n} \\ & \mathrm{D}_{\mathrm{n}}+\mathrm{d} \rightarrow \mathrm{~d} \end{aligned}$ | Add binary（ADDI or ADDD is used when source is \＃n．Prevent ADDC with \＃n．L） |
| ADDA $^{4}$ | WL | s，An |  | s | e | s | s | s | s | s | s | s | s | $s$ | s | $\mathrm{s}+\mathrm{An} \rightarrow \mathrm{An}$ | Add address（．W sign－extended to ．L） |
| $\mathrm{ADOL}^{4}$ | BWL | \＃n，d |  | d | － | d | d | d | d | $d$ | d | d | － | － | s | $\# n+d \rightarrow d$ | Add immediate to destination |
| $\mathrm{ADOL}^{4}$ | BWL | \＃n，d |  | d | d | d | d | d | $d$ | d | d | d | － | － | s | $\#_{n}+\mathrm{d} \rightarrow \mathrm{d}$ | Add quick immediate（\＃n range：I to 8） |
| ADDX | BWL | $\begin{aligned} & \begin{array}{l} \text { Dy, Dx } \\ -(A y) .-(A x) \end{array} \\ & \hline \end{aligned}$ | ＊＊＊＊＊ | e |  |  |  | e |  | － |  |  |  |  |  | $\begin{aligned} & D y+D x+X \rightarrow D x \\ & -(A y)+-(A x)+X \rightarrow-(A x) \end{aligned}$ | Add source and eXtend bit to destination |
| $\mathrm{AND}^{4}$ | BWL | $\begin{aligned} & \hline \text { s,Dn } \\ & \text { Dn,d } \end{aligned}$ | －＊＊00 | $\begin{array}{\|l\|l} \mathrm{e} \\ \mathrm{e} \\ \hline \end{array}$ |  | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \end{aligned}$ | s |  | $s^{4}$ | $\begin{aligned} & \mathrm{s} \text { AND Dn } \rightarrow \mathrm{Dn} \\ & \mathrm{Dn}_{\mathrm{n}} \text { AND d } \rightarrow \mathrm{d} \end{aligned}$ | Logical AND source to destination <br> （ANDI is used when source is \＃n） |
| $\mathrm{ANOI}^{4}$ | BWL | \＃n，d | ＊00 | d | － | d | d | d | $d$ | d | d | d | － | － | s | \＃n AND d $\rightarrow$ d | Logical AND immediate to destination |
| $\mathrm{ANOl}^{4}$ | B | \＃n，CLR | ミ\＃\＃\＃\＃ | － | － | － | － | － | － | － | － | － | － | － | s | \＃n AND CCR $\rightarrow$ CLR | Logical AND immediate to CCR |
| $\mathrm{ANOI}^{4}$ | W | \＃n，SR | 三ミ三日 | － | － | － | － | － | － | － | － | － | － | － | s | \＃n AND SR $\rightarrow$ SR | Logical AND immediate to SR（Privileged） |
| $\begin{array}{\|l\|} \hline \text { ASL } \\ \text { ASR } \end{array}$ | $\begin{array}{\|c\|} \hline \text { BWL } \\ W \\ \hline \end{array}$ | $\begin{aligned} & \text { Dx,Dy } \\ & \# n, D y \\ & \text { d } \end{aligned}$ | ＊＊＊＊＊ | $\left.\begin{array}{\|l\|} \mathrm{e} \\ \mathrm{~d} \\ - \end{array} \right\rvert\,$ |  | $d$ | d | $d$ | $d$ | $\mathrm{d}$ | $d$ | $\mathrm{d}$ |  |  | s |  | Arithmetic shift Dy by Dx bits left／right Arithmetic shift Dy \＃n bits L／R（\＃n：I to 8） Arithmetic shift ds I bit left／right（．W only） |
| Bcc | $B^{3}$ | address ${ }^{2}$ | －－－ | － | － | － | － | － | － | － | － | － | － | － | － | if cc true then address $\rightarrow$ PC | Branch conditionally（ce table on back） （8 or If－bit $\pm$ offset to address） |
| BCHG | B L | $\begin{array}{\|l\|} \hline \text { Dn,d } \\ \# n, d \end{array}$ | －－＊－－ | $\begin{array}{\|l\|} \hline \mathrm{e}^{\prime} \\ \mathrm{d}^{\prime} \\ \hline \end{array}$ |  | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \text { d } \\ & d \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ |  |  | s | $\mathrm{NOT}($ bit number of d）$\rightarrow$ z NOT（bit n of d）$\rightarrow$ bit n of d | Set $Z$ with state of specified bit in $d$ then invert the bit in d |
| BCLR | B L | $\begin{aligned} & \text { Dn,d } \\ & \# n, d \end{aligned}$ | －－＊－－ | $\begin{array}{\|c\|} \hline e^{\prime} \\ d^{\prime} \end{array}$ | $-$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \text { d } \\ & d \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ |  |  | s | $\begin{aligned} & \text { NOT(bit number of } d) \rightarrow z \\ & 0 \rightarrow \text { bit number of } d \end{aligned}$ | Set $Z$ with state of specified bit in $d$ then clear the bit ind |
| BRA | BW ${ }^{3}$ | address ${ }^{2}$ | －－－－－ | － | － | － | － | － | － | － | － | － | － | － | － | address $\rightarrow$ PC | Branch always（8 or l6－bit $\pm$ affset to addr） |
| BSET | B L | $\begin{aligned} & \text { Dn,d } \\ & \# n, d \end{aligned}$ | －－ | $\begin{array}{\|c\|} \hline e^{\prime} \\ d^{\prime} \end{array}$ |  | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \text { d } \\ & \text { d } \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ |  |  | s | $\begin{aligned} & \text { NOT( bit n of } d) \rightarrow z \\ & l \rightarrow \text { bit n of } d \end{aligned}$ | Set $Z$ with state of specified bit in $d$ then set the bit in d |
| BSR | $B^{3}$ | address $^{2}$ | －－－－－ | － | － | － | － | － | － | － | － | － | － | － | － | PC $\rightarrow$－（SP）；address $\rightarrow$ PC | Branch to subroutine（8 or 16－bit $\pm$ offse |
| BTST | B | $\begin{array}{\|l\|l\|} \hline \text { Dn,d } \\ \# n, d \\ \hline \end{array}$ | － | $\begin{array}{\|c\|} \hline e^{\prime} \\ \mathrm{d}^{\prime} \\ \hline \end{array}$ |  | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | $s$ | $\begin{aligned} & \text { NOT( bit Dn of d) } \rightarrow z \\ & \text { NOT(bit \#n of } d) \rightarrow z \end{aligned}$ | Set $Z$ with state of specified bit in d Leave the bit in d unchanged |
| CHK | W | s，Dn | －＊UUU | e | － | s | s | s | s | s | s | s | s | s | s |  | Compare Dn with D and upper bound［s］ |
| CLR | BWL | d | －0100 | d | － | d | d | d | d | d | d | d | － | － | － | $0 \rightarrow$ d | Clear destination to zero |
| CMP $^{4}$ | BWL | s，Dn | －＊＊＊＊ | 8 | $\mathrm{s}^{4}$ | s | s | s | s | s | s | s | s | s | $\mathrm{s}^{4}$ | set CCR with Dn－s | Compare Dn to source |
| CMPA $^{4}$ | WIL | s，An |  | s | e | s | s | s | s | s | s | s | s | s | s | set CCR with An－s | Compare An to source |
| CMPI $^{4}$ | BWL | \＃n，d | －＊＊＊＊ | d | － | d | d | d | d | d | d | d | － | － | s | set LCR with d－\＃n | Compare destination to \＃n |
| CMPM $^{4}$ | BWL | （Ay）＋，（Ax）＋ | －＊＊＊＊ | － | － | － | e | － | － | － | － | － | － | － | － | set CCR with（Ax）－（Ay） | Compare（Ax）to（Ay）：Increment Ax and Ay |
| DBcc | W | Dn，addres ${ }^{2}$ | －－－－－ | － | － | － | － | － | － | － | － | － | － | － | － | $\begin{aligned} & \text { if cc false then }\left\{\mathrm{Dn}_{\mathrm{n}} \mathrm{l} \rightarrow \mathrm{Dn}_{n}\right. \\ & \text { if } \left.\mathrm{Dn}_{\mathrm{n}}<>-1 \text { then addr } \rightarrow \mathrm{PC}\right\} \end{aligned}$ | Test condition，decrement and branch （16－bit $\pm$ affset to address） |
| DIVS | W | s，Dn | －＊＊＊0 | E | － | s | s | s | s | s | s | s | s | s | s | $\pm 32$ bit $\mathrm{Dn} / \pm 16$ bit s $\rightarrow \pm \mathrm{Dn}$ | Dn $=$［ IG－bit remainder，If－bit quotient ］ |
| DIVU | W | s，Dn | －＊＊＊0 | e | － | s | s | s | s | s | s | s | s | s | s | 32bit Dn／／Gbit s $\rightarrow$ Dn | Dn＝［ 16－bit remainder，16－bit quatient ］ |
| $\mathrm{EQR}^{4}$ | BWL | Dn，d | －＊＊00 | e | － | d | d | d | d | d | d | d | － | － | $\mathrm{s}^{4}$ | Dn XOR d $\rightarrow$ d | Logical exclusive OR Dn to destination |
| ERR1 ${ }^{4}$ | BWL | \＃n，d | －＊＊00 | d | － | d | d | d | d | d | d | d | － | － | s | \＃n X ${ }^{\text {a }} \mathrm{d} \rightarrow$ d | Logical exclusive OR \＃n to destination |
| EQRI ${ }^{4}$ | B | \＃n，CLR | ミEEE\＃ | － | － | － | － | － | － | － | － | － | － | － | s | \＃n XOR CCR $\rightarrow$ CCR | Logical exclusive OR \＃n to CCR |
| EDR1 ${ }^{4}$ | W | \＃n，SR | 三E\＃\＃\＃ | － | － | － | － | － | － | － | － | － | － | － | s | \＃n XDR SR $\rightarrow$ SR | Logical exclusive DR \＃n to SR（Privileged） |
| EXC | L | Rx，Ry | － | e | E | － | － | － | － | － | － | － | － | － | － | register $\leqslant \rightarrow$ register | Exchange registers（32－bit only） |
| EXT | WL | Dn | －＊＊00 | d | － | － | － | － | － | － | － | － | － | － | － |  | Sign extend（change ．B to ．W or．W to．L） |
| ILLEGAL |  |  | －－－－－ | － | － | － | － | － | － | $\checkmark$ | － | － | － | － | － | PC $\rightarrow$－（SSP）：SR $\rightarrow$－（SSP） | Generate Illegal Instruction exception |
| JMP |  | d | －－－－－ | － | － | d | － | － | d | d | d | d | d | d | － | $\uparrow d \rightarrow$ PC | Jump to effective address of destination |
| JSR |  | d | －－－－ | － | － | d | － | － | d | d | d | d | d | d | － | PC $\rightarrow$－（SP）；$\uparrow$ ¢ $\rightarrow$ PC | push PC，jump to subroutine at address d |
| LEA | L | s，An |  | － | E | s | － | － | s | s | s | s | s | s | － | $\mathrm{T}_{\mathrm{s}} \rightarrow \mathrm{An}$ | Load effective address of s to An |
| LINK |  | An，\＃n |  | － | － | － | － | － | － | － | － | － | － | － | － | $\begin{aligned} & A_{n} \rightarrow-(S P) ; S P \rightarrow A n ; \\ & S P+\# n \rightarrow S P \end{aligned}$ | Create local workspace on stack （negative $n$ to allocate space） |
| $\begin{aligned} & \hline \text { LSL } \\ & \text { LSR } \end{aligned}$ | $\begin{gathered} \hline \text { BWL } \\ \text { W } \end{gathered}$ | $\begin{array}{\|l} \hline 0 x, D y \\ \# n, D y \\ \text { d, } \\ \hline \end{array}$ | ＊＊＊0＊ | $\left.\begin{aligned} & \mathrm{e} \\ & \mathrm{~d} \end{aligned} \right\rvert\,$ |  | d | d | $\mathrm{d}$ | $\mathrm{d}$ | $\mathrm{d}$ | d | d |  | － | － |  | Logical shift Dy．Dx bits left／right Logical shift Dy．\＃n bits L／R（\＃n：I to 8） Logical shift d I bit left／right（．W only） |
| MOVE ${ }^{4}$ | BWL | s，d | －＊＊00 | e | $\mathrm{s}^{4}$ | E | e | e | e | e | E | e | s | s | $\mathrm{s}^{4}$ | s $\rightarrow$ d | Move data from source to destination |
| MOVE | V | s，CCR | 三\＃\＃\＃\＃ | s | － | s | s | s | s | s | s | s | s | s | s | $s \rightarrow$ CLR | Move source to Condition Code Register |
| MOVE | W | s，SR | \＃\＃\＃\＃\＃\＃ | s | － | s | s | s | s | s | s | s | s | s | s | $s \rightarrow$ SR | Move source to Status Register（Privileged） |
| MOVE | W | SR，d | －－－－－ | d | － | d | d | d | d | d | d | d | － | － | － | SR $\rightarrow$ d | Move Status Register to destination |
| MOVE | L | $\begin{aligned} & \text { USP,An } \\ & \text { An,USP } \end{aligned}$ |  |  | $\begin{aligned} & \hline d \\ & s \end{aligned}$ |  |  | － | － | － | － |  | － | － | － | $\begin{aligned} & U S P \rightarrow A n \\ & A n \rightarrow U S P \end{aligned}$ | Move User Stack Pointer to An（Privileged） Move An to User Stack Pointer（Privileged） |
|  | BWL | s．d | XNzVC | Dn | An | （An） | （An）＋ | －（An） | （iAn） | （iAn，Rn） | abs．W | abs．L | （i．PC） | （i．PC，Rn） | \＃n |  |  |

Computer Architecture－EPITA－S3－2016／2017

| Dpcode | Size | Operand | CCR | Effective Address s＝source，d＝destination，e＝either， i ＝displacement |  |  |  |  |  |  |  |  |  |  |  | Operation | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BWL | s．d | XNZVC | Dn | $\mathrm{An}^{\text {a }}$ | （An） | （An）＋ | －（An） | （iAn） | （iAn，Rn） | abs．W | abs．L | （i．，PC） | （i．PC，Rn） | \＃n |  |  |
| MDVEA ${ }^{4}$ | WL | s，An | －－－－－ | s | e | s | s | s | s | s | s | s | s | s | s | $s \rightarrow$ An | Move source to An（MDVE s，An use MOVEA） |
| MDVEM ${ }^{4}$ | WL | $\begin{array}{\|l\|} \hline R_{n}-R_{n, d} \\ \text { s, } R_{n}-R_{n} \end{array}$ | －－－－－ |  |  | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~s} \end{aligned}$ | $\mathrm{s}$ | d | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~s} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~s} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~s} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~s} \\ & \hline \end{aligned}$ | $s$ | s | － | $\begin{aligned} & \text { Registers } \rightarrow \mathrm{d} \\ & \mathrm{~s} \rightarrow \text { Registers } \end{aligned}$ | Move specified registers ta／from memory （．W source is sign－extended to ．L for Rn） |
| MOVEP | WL | $\begin{aligned} & \begin{array}{l} \mathrm{Dn},(\mathrm{i}, \mathrm{An}) \\ (\mathrm{i}, \mathrm{An}), \mathrm{Dn} \end{array} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & s \\ & d \end{aligned}$ |  |  |  |  | $\begin{aligned} & \hline \mathrm{d} \\ & \mathrm{~s} \\ & \hline \end{aligned}$ | － | － | － | － |  | － | $\begin{aligned} & D_{n} \rightarrow \text { (i,An)...(i+2.An)...(i+4,A. } \\ & (\mathrm{i}, \mathrm{An}) \rightarrow \mathrm{Dn}_{\mathrm{n}} . .(\mathrm{i}+2, \mathrm{An}) . . .(i+4, \mathrm{~A} . \end{aligned}$ | Move Dn to／from alternate memory bytes （Access only even ar add addresses） |
| MDVE发 ${ }^{4}$ | L | \＃n，Dm | －＊＊00 | d | － | － | － | － | － | － | － | － | － | － | s | $\# \mathrm{n} \rightarrow \mathrm{Dn}$ | Move sign extended 8－bit \＃n to Dn |
| MULS | W | s，Dn | －＊＊00 | E | － | s | s | s | s | s | s | s | s | s | s | $\pm$｜Cbit s ${ }^{*} \pm 16 \mathrm{Cit} \mathrm{Dn}_{\mathrm{n}} \rightarrow \pm \mathrm{Dn}^{\text {n }}$ | Multiply signed I6－bit；result：signed 32－bit |
| MULLU | W | s，Dm | －＊＊00 | E | － | s | s | s | s | s | s | s | s | s | S | IGbit s＊ $16 \mathrm{bit} \mathrm{Dn} \rightarrow \mathrm{Dn}^{\text {n }}$ | Multiply unsig＇d 16－bit；result：unsig＇d 32－bit |
| NBCD | B | d | ＊${ }^{*} \mathrm{U}^{*}$ | d | － | d | d | d | d | d | d | d | － | － | － | $0-d_{10}-X \rightarrow d$ | Negate BCD with eXtend，BCD result |
| NEE | BWL | d | ＊＊＊＊＊ | d | － | d | d | d | d | d | d | d | － | － | － | $0-\mathrm{d} \rightarrow \mathrm{d}$ | Negate destination（2＇s complement） |
| NEGX | BWL | d | ＊＊＊＊＊ | d | － | d | d | d | d | d | d | d | － | － | － | $0-\mathrm{d}-\mathrm{X} \rightarrow \mathrm{d}$ | Negate destination with eXtend |
| NOP |  |  | －－－－－ | － | － | － | － | － | － | － | － | － | － | － | － | None | No operation accurs |
| NDT | BWL | d | －＊＊00 | d | － | d | d | d | d | d | d | d | － | － | － | $\mathrm{NOT}(\mathrm{d}) \rightarrow \mathrm{d}$ | Logical NOT destination（I＇s complement） |
| $0 R^{4}$ | BWL | $\begin{aligned} & \text { s,Dn } \\ & \text { Dn,d } \end{aligned}$ | －＊＊00 | $\begin{aligned} & \mathrm{e} \\ & \mathrm{e} \end{aligned}$ |  | $\begin{aligned} & \text { s } \\ & \text { d } \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & s \\ & d \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \text { d } \end{aligned}$ | $\begin{aligned} & s \\ & d \end{aligned}$ | $\begin{aligned} & \text { s } \\ & \text { d } \end{aligned}$ | $\begin{aligned} & s \\ & d \end{aligned}$ | s | s | $s^{4}$ | $\begin{aligned} & \mathrm{s} \mathrm{RRDn} \rightarrow \mathrm{Dn}_{n} \\ & \mathrm{D}_{\mathrm{n}} \text { QRd } \rightarrow \mathrm{d} \end{aligned}$ | Logical DR <br> （ DRI is used when source is \＃n） |
| ORI ${ }^{4}$ | BWL | \＃n，d | －＊＊00 | d | － | d | d | d | d | d | d | d | － | － | s | \＃n QRd $\rightarrow$ d | Logical DR \＃n to destination |
| QRI ${ }^{4}$ | B | \＃n，LCR | \＃\＃\＃\＃\＃ | － | － | － | － | － | － | － | － | － | － | － | s | \＃n RR CCR $\rightarrow$ CCR | Logical OR \＃n to CCR |
| QRI ${ }^{4}$ | W | \＃n，SR | 三EミE\＃ | － | － | － | － | － | － | － | － | － | － | － | s | \＃n DR SR $\rightarrow$ SR | Logical OR \＃n to SR（Privileged） |
| PEA | L | s | －－－－－－ | － | － | s | － | － | s | s | s | s | s | s | － | $\mathrm{T}_{s} \rightarrow$－（SP） | Push effective address of s onto stack |
| RESET |  |  | －－－－－－ | － | － | － | － | － | － | － | － | － | － | － | － | Assert RESET Line | Issue a hardware RESET（Privileged） |
| $\begin{aligned} & \hline \text { ROL } \\ & \text { RDR } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { BWL } \\ W \\ \hline \end{array}$ | $\begin{aligned} & \hline 0 x, D y \\ & \# n, D y \\ & d \\ & d \end{aligned}$ | －＊＊0＊ | $\begin{aligned} & e \\ & d \end{aligned}$ | － | $d$ | $\mathrm{d}$ | $\mathrm{d}$ | d | d |  | d |  | － | s | $\stackrel{a}{\square} \stackrel{\square}{\square}$ | Rotate Dy．Dx bits left／right（without X） Rotate Dy．\＃n bits left／right（\＃n： 1 to 8） Rotate d I－bit left／right（W only） |
| $\begin{array}{\|l} \hline \mathrm{RDXL} \\ \mathrm{RDXR} \end{array}$ | $\begin{array}{\|c\|} \hline \text { BWL } \\ W \\ \hline \end{array}$ | $\begin{aligned} & D x, D y \\ & \# n, D y \\ & d \end{aligned}$ | ＊＊＊0＊ | $\begin{aligned} & e \\ & d \end{aligned}$ |  | d | $\mathrm{d}$ | $d$ |  | $\mathrm{d}$ |  |  |  |  | s | $\xrightarrow[\square]{\square}$ | Rotate Dy．Dx bits L／R，X used then updated Rotate Dy．\＃n bits left／right（\＃n：1 to 8） <br> Rotate destination 1－bit left／right（．W only） |
| RTE |  |  | 三ミ\＃\＃\＃ | － | － | － | － | － | － | － | － | － | － | － | － | （SP）＋$\rightarrow$ SR；（SP）＋$\rightarrow$ PC | Return fram exception（Privileged） |
| RTR |  |  | 三ミ\＃\＃\＃ | － | － | － | － | － | － | － | － | － | － | － | － | （SP）$+\rightarrow$ CLR．（SP）$+\rightarrow$ PC | Return from subroutine and restore LCR |
| RTS |  |  | －－－－－ | － | － | － | － | － | － | － | － | － | － | － | － | （SP）$+\rightarrow$ P | Return from subroutine |
| SBCD | B | $\begin{aligned} & \text { Dy, Dx } \\ & -(A y) . \text {-(Ax) } \end{aligned}$ | ＊${ }^{*} \mathrm{U}^{*}$ | e | - |  |  | E |  | － |  |  |  |  |  | $\begin{aligned} & D x_{01}-D y_{10}-X \rightarrow D x_{10} \\ & -(A x)_{10}-(A y)_{10}-X \rightarrow-(A x)_{10}-( \end{aligned}$ | Subtract BCD source and eXtend bit from destination． BCD result |
| Scc | B | d |  | d | － | d | d | d | d | d | d | d | － | － | － | $\begin{array}{r} \text { If cc is true then I's } \rightarrow \mathrm{d} \\ \text { else } \mathrm{D} \text { 's } \rightarrow \mathrm{d} \\ \hline \end{array}$ | $\begin{aligned} \text { If cc true then } \mathrm{d} . \mathrm{B} & =11111111 \\ \text { else } \mathrm{d} . \mathrm{B} & =00000000 \end{aligned}$ |
| STIP |  | \＃n | 三Е三ミ | － | － | － | － | － | － | － | － | － | － | － | s | \＃n $\rightarrow$ SR；STDP | Move \＃n to SR，stop pracessor（Privileged） |
| SUB ${ }^{4}$ | BWL | $\begin{array}{\|l\|} \hline \text { s, Dn } \\ \text { Dn,d } \\ \hline \end{array}$ | ＊＊＊＊＊ | $\begin{aligned} & \mathrm{e} \\ & \mathrm{e} \end{aligned}$ | $\begin{gathered} \mathrm{s} \\ d^{4} \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | s | s | $\mathrm{s}^{4}$ | $\begin{aligned} & \mathrm{Dn}_{\mathrm{n}}-\mathrm{s} \rightarrow \mathrm{Dn}_{\mathrm{n}} \\ & \mathrm{~d}-\mathrm{Dn}_{\mathrm{n}} \rightarrow \mathrm{~d} \end{aligned}$ | Subtract binary（SUBI or SUBQ used when source is \＃n．Prevent SUBQ with \＃n．L） |
| SUBA ${ }^{4}$ | WIL | s．An |  | s | E | s | s | s | s | s | s | s | s | s | s | $\mathrm{An}^{-s} \rightarrow \mathrm{An}^{\text {n }}$ | Subtract address（．W sign－extended to ．L） |
| SUBI ${ }^{4}$ | BWL | \＃n，d | ＊＊＊＊＊ | d | － | d | d | d | d | d | d | d | － | － | s | $\mathrm{d}-\mathrm{\# n} \rightarrow \mathrm{~d}$ | Subtract immediate from destination |
| SUBD ${ }^{4}$ | BWL | \＃n，d | ＊＊＊＊＊ | d | d | d | d | d | d | d | d | d | － | － | s | $\mathrm{d}-\mathrm{\# n} \rightarrow \mathrm{~d}$ | Subtract quick immediate（\＃n range： 1 to 8） |
| SUBX | BWL | $\begin{aligned} & \begin{array}{l} \text { Dy, Dx } \\ -(A y) .-(A x) \end{array} \\ & \hline \end{aligned}$ | ＊＊＊＊＊ | e | － |  | － | 8 | － | － | － | － | － | － | － | $\begin{array}{\|l} \hline D x-D y-X \rightarrow D x \\ -(A x)-(A y)-X \rightarrow-(A x) \\ \hline \end{array}$ | Subtract source and eXtend bit from destination |
| SWAP | W | Dn | －＊＊00 | d | － | － | － | － | － | － | － | － | － | － | － | bits［31：16］$\rightarrow$ bits［15：0］ | Exchange the l6－bit halves of $\mathrm{D}_{\text {n }}$ |
| TAS | B | d | －＊＊00 | d | － | d | d | d | d | d | d | d | － | － | － | test d $\rightarrow$ CLR； $1 \rightarrow$ bit7 of d | N and Z set to reflect d．bit7 of d set to 1 |
| TRAP |  | \＃n |  | － | － | － | － | － | － | － | － | － | － | － | s | $\begin{aligned} & \text { PC } \rightarrow \text {-(SSP):SR } \rightarrow \text {-(SSP); } \\ & \text { (vector table entry) } \rightarrow \text { PC } \end{aligned}$ | Push PC and SR，PC set by vector table \＃n （\＃n range： Q to 15 ） |
| TRAPV |  |  | －－－－－ | － | － | － | － | － | － | － | － | － | － | － | － | If V then TRAP \＃7 | If overflow，execute an Dverflow TRAP |
| TST | BWL | d | －＊＊00 | d | － | d | d | d | d | d | d | d | － | － | － | test d $\rightarrow$ CLR | $N$ and Z set to reflect destination |
| UNLK |  | An | －－－－－ | － | d | － | － | － | － | － | － | － | － | － | － | An $\rightarrow$ SP；（SP）＋$\rightarrow$ An | Remove local workspace from stack |
|  | BWL | s．d | XNZVC | Dn | An | （An） | （An）＋ | －（An） | （iAn） | （iAn，Rn） | abs．W | abs．L | （i．，PC） | （i．PC，Rn） | \＃n |  |  |


| Condition Tests（＋OR，！NDT，© X OR：$^{\text {a }}$ Unsigned，${ }^{\text {a }}$ Alternate cc ） |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cc | Condition | Test | cc | Condition | Test |
| I | true | 1 | V | overflow clear | IV |
| F | false | 0 | VS | overflow set | V |
| $\mathrm{HH}^{\text {a }}$ | higher than | $!(C+L)$ | PL | plus | IN |
| LS ${ }^{\text {u }}$ | lower ar same | C＋ 2 | MI | minus | N |
| HS ${ }^{\text {u }}$ ， $\mathrm{CL}^{\text {a }}$ | higher or same | ！ 5 | GE | greater or equal | $!(N \oplus V)$ |
| L0 ${ }^{\text {a }}$ CS ${ }^{\text {a }}$ | lower than | ¢ | LT | less than | $(\mathrm{N} \oplus \mathrm{V})$ |
| NE | not equal | ！2 | GT | greater than | $![(N \oplus V)+L]$ |
| ED | equal | 2 | LE | less or equal | $(\mathrm{N} \oplus \mathrm{V})+\mathrm{Z}$ |

Revised by Peter Csaszar，Lawrence Tech University－2004－2006

An Address register（ $16 / 32$－bit，$n=0-7$ ）
Dn Data register（ $8 / 16 / 32$－bit， $\mathrm{n}=0-7$ ）
Rn any data or address register
s Source，d Destination
e Either source or destination
\＃n Immediate data，i Displacement
BCD Binary Coded Decimal
$\uparrow$ Effective address
Long only：all others are byte only Assembler calculates offset

Assembler autamatically uses A，I，C or M form if possible．Use \＃n．L to prevent Quick optimization
Distributed under the GNU general public use license．

