$\begin{array}{c} \text{Algorithmics} \\ \text{Final Exam } \#3 \ (\text{P3}) \end{array}$

Undergraduate 2^{nd} year - S3# EPITA

May 12, 2021 - 9:30

Instructions (read it) :

 \Box You must answer on the answer sheets provided.

- No other sheet will be picked up. Keep your rough drafts.
- Answer within the provided space. Answers outside will not be marked: Use your drafts!
- Do not separate the sheets unless they can be re-stapled before handing in.
- Penciled answers will not be marked.
- \Box The presentation is negatively marked, which means that you are marked out of 20 points and the presentation points (maximum of 2) are taken off this grade.

 \Box Code:

- All code must be written in the language Python (no C, CAML, ALGO or anything else).
- Any Python code not indented will not be marked.
- All that you need (classes, types, routines) is indicated where needed!
- You can write your own functions as long as they are documented (we have to know what they do).

In any case, the **last** written function should be the one which answers the question.

 \Box Duration : 2h

Exercise 1 (Warshall - Union-Find - 4 points)

Let G_1 be the graph $\langle S, A \rangle$ with vertices numbered from 0 to 8.

The algorithms find and union (non-optimized versions) applied the list of edges A of G_1 allowed to build the following vector P.

	0	1	2	3	4	5	6	7	8
P	8	5	-1	-1	6	-1	2	3	1

- 1. What are the connected components (vertex sets) of the graph G_1 ?
- 2. Give the adjacency matrix of the transitive closure of G_1 (no value = false, 1 = true).
- 3. This time the optimized versions of find (with path compression) and union (by rank) are applied to the list of edges A of G_1 . Among the following vectors, which could correspond to the result?

D.	0	1	2	3	4	5	6	7	8
11	8	8	4	7	-3	8	4	-2	-4
	0	1	ი	9	4	Б	6	7	0
P_2			6	7	4	1	-3	· -2	$\boxed{2}$
		Т	0		0	1	-0	-2	2
Б	0	1	2	3	4	5	6	7	8
Γ_3	8	8	6	7	6	8	-3	-3	-4
						-		_	
P_{4}		1	2	3	4	5	6	7	8
4	-4	0	4	7	-3	0	4	-2	0

Exercise 2 (Get Back – 4 points)

In some problems, we use a mark vector in which each vertex can have 3 values during a traversal:

- A value (None for instance) for the unmarked vertices
- A value for the first meeting (for instance 1)
- A value for the second meeting (for instance 2)

Using imperatively a mark vector with 3 values, no matter which ones, write the function acyclic(G) that checks whether the digraph G is acyclic.

Exercise 3 (Density – 6 points)

An undirected simple graph (without multiple links nor loops) is called *dense* when the number of edges (p) is large compared to the number of vertices (n).

For this exercise we define the *density* of a graph by the measure p/n.

- 1. For a simple connected graph:
 - (a) The less dense: give the minimal value of p as a function of n. What type of graph can have these measures?
 - (b) The most dense: give the maximal value of p as a function of n. What type of graph can have these measures?
- 2. Write the function density_components that returns the list of the *density* of the connected components of a simple undirected graph.

Figure 1: Graph G_3cc

Application example, with G_3cc the graph in figure 1:

>>> density_components(G_3cc) [1.25, 1.333333333333333333, 1.0]

- The first component has 4 vertices, 5 edges
- The second component has 6 vertices, 8 edges
- The third component has 4 vertices, 4 edges

Exercise 4 (Levels - 6 points)

Definitions:

- The distance (distance(x, y)) between two vertices x and y in a graph is the number of edges in a shortest path connecting them.
- The eccentricity of a vertex x in $G = \langle S, A \rangle$ is defined by:

$$\exp(x) = \max_{y \in S} \{ distance(x, y) \}$$

Figure 2: Gc

Write the function levels(G) that returns a list L of length exc(src) + 1 in which each value L[i] contains the vertices at a distance i from src in G.

Application example on the graph Gc in figure 2 (the order in the sub-lists is not important):

>>> 1	evel:	s (G	с,	0)								
[[0],	[4,	6,	8,	9],	[2,	7,	10,	1,	5,	11,	12],	[3]]

Appendix

Classes Graph and Queue are assumed to be imported.

Graphs

All exercises use the implementation with adjacency lists of graphs. Graphs we manage cannot be empty. There is neither multiple edges nor loops.

```
class Graph:
1
          def __init__(self, order, directed = False):
2
               self.order = order
3
               self.directed = directed
4
               self.adjlists = []
5
               for i in range(order):
6
                   self.adjlists.append([])
7
8
          def addedge(self, src, dst):
9
               self.adjlists[src].append(dst)
10
               if not self.directed and dst != src:
11
                   self.adjlists[dst].append(src)
12
```

Others

	• range			
Queues	• min, max			
• Queue() returns a new queue	• on lists:			
• q .enqueue(e) enqueues e in q	- len(L)			
• q .dequeue() returns the first element of q , dequeued	— L.append(elt)			
• q.isempty() tests whether q is empty	- L.pop()			
	<pre>- L.pop(index)</pre>			
	- L.insert(index, elt)			
	and any operator			

Your functions

You can write your own functions as long as they are **documented** (we have to know what they do). In any case, the last written function should be the one which answers the question.