Algorithmics
Final Exam #3 (P3)

Undergraduate 2" year - S3#
EPiTA

May 12, 2021 -9 : 30

Instructions (read it) :
O You must answer on the answer sheets provided.

— No other sheet will be picked up. Keep your rough drafts.

— Answer within the provided space. Answers outside will not be marked: Use your drafts!
— Do not separate the sheets unless they can be re-stapled before handing in.

— Penciled answers will not be marked.

O The presentation is negatively marked, which means that you are marked out of 20 points and the pre-
sentation points (maximum of 2) are taken off this grade.

O Code:

— All code must be written in the language Python (no C, CAML, ALGO or anything else).
— Any Python code not indented will not be marked.
— All that you need (classes, types, routines) is indicated where needed!

— You can write your own functions as long as they are documented (we have to know what they
do).

In any case, the last written function should be the one which answers the question.

O Duration : 2h

Hie coNepeE el T .

Algorithmics Undergraduate 2" year - S3#
FINAL ExaM #3 (P3) — May 12, 2021 - 9 : 30 EpITA

Exercise 1 (Warshall - Union-Find — 4 points)

Let GG1 be the graph < S, A > with vertices numbered from 0 to 8.
The algorithms find and union (non-optimized versions) applied the list of edges A of G allowed to build

the following vector P.
0o 1 2 3

4 8
P[8]5]-1[-1]6]

5 6 7
T[2[3]1]

1. What are the connected components (vertex sets) of the graph G1?
2. Give the adjacency matrix of the transitive closure of G; (no value = false, 1 = true).

3. This time the optimized versions of find (with path compression) and union (by rank) are applied to the
list of edges A of G;. Among the following vectors, which could correspond to the result?

Exercise 2 (Get Back — 4 points)
In some problems, we use a mark vector in which each vertex can have 3 values during a traversal:
e A value (None for instance) for the unmarked vertices
e A value for the first meeting (for instance 1)
e A value for the second meeting (for instance 2)

Using imperatively a mark vector with 3 values, no matter which ones, write the function acyclic(G)
that checks whether the digraph G is acyclic.

Algorithmics

Undergraduate 2" year - S3#
FINAL ExaM #3 (P3) — May 12, 2021 - 9 : 30

EpiTA

Exercise 3 (Density — 6 points)

An undirected simple graph (without multiple links nor loops) is called dense when the number of edges (p)
is large compared to the number of vertices (n).

For this exercise we define the density of a graph by the measure p/n.

1. For a simple connected graph:

(a) The less dense: give the minimal value of p as a function of n. What type of graph can have these
measures?

(b) The most dense: give the maximal value of p as a function of n. What type of graph can have
these measures?

2. Write the function density_components that returns the list of the density of the connected components
of a simple undirected graph.

.

(Co }—{ 12)
\ T} Application example, with G_3cc the graph in figure 1:
A

1 >>> density_components (G_3cc)

L 1)
f\ Ry ~— > [1.25, 1.3333333333333333, 1.0]
‘//\/__ Fah
Oy ~ [IIJ> e /_‘\,

I\‘i‘\)“'(s e T - X}/ e The first component has 4 vertices, 5 edges
\ " Yy
40
‘\| A _/J\} 5 e The second component has 6 vertices, 8 edges
J N s

e The third component has 4 vertices, 4 edges
Figure 1: Graph G_3cc

Exercise 4 (Levels — 6 points)

Definitions:

e The distance (distance(x,y)) between two vertices x and y in a graph is the number of edges
in a shortest path connecting them.

e The eccentricity of a vertex x in G =< S, A > is defined by:

exc(z) = max{distance(z,y)}
yeS

Figure 2: Gc

Write the function levels(G) that returns a list L of length exc(sre) + 1 in which each value L[i] contains
the vertices at a distance ¢ from src in G.

Application example on the graph Gc in figure 2 (the order in the sub-lists is not important):
>>> levels (Gec, 0)
(col, r4, 6, 8, 91, [2, 7, 10, 1, 5, 11, 12], [3]]

Algorithmics Undergraduate 2" year - S3#

FINAL ExaM #3 (P3) — May 12, 2021 - 9 : 30

EpiTA

Appendix
Classes Graph and Queue are assumed to be imported.

Graphs

All exercises use the implementation with adjacency lists of graphs.
Graphs we manage cannot be empty. There is neither multiple edges nor loops.

1 class Graph:

2 def __init__(self, order, directed = False):
self .order = order
A self .directed = directed

self.adjlists = []
6 for i in range (order):
7 self.adjlists.append ([])

9 def addedge(self, src, dst):

10 self.adjlists[src].append(dst)

11 if not self.directed and dst != src:
12 self.adjlists[dst].append(src)

Others

e range

Queues e min, max
e Queue() returns a new queue .
e on lists:
e ¢.enqueue(e) enqueues e in g ~ Ten(L)

e g.dequeue() returns the first element of ¢, dequeued L.append(elt)

o ¢.isempty() tests whether ¢ is empty — L.popO)
— L.pop(index)

— L.insert(index, elt)

and any operator. ..

Your functions

You can write your own functions as long as they are documented (we have to know what they do).
In any case, the last written function should be the one which answers the question.

