
Algorithmics
Final Exam #3 (P3)

Undergraduate 2nd year - S3
Epita

January 5, 2021 - 9 : 30

Instructions (read it) :

2 You must answer on the answer sheets provided.

– No other sheet will be picked up. Keep your rough drafts.

– Answer within the provided space. Answers outside will not be marked: Use your drafts!

– Do not separate the sheets unless they can be re-stapled before handing in.

– Penciled answers will not be marked.

2 The presentation is negatively marked, which means that you are marked out of 20 points and the pre-
sentation points (maximum of 2) are taken off this grade.

2 Code:

– All code must be written in the language Python (no C, Caml, Algo or anything else).

– Any Python code not indented will not be marked.

– All that you need (classes, types, routines) is indicated where needed!

– You can write your own functions as long as they are documented (we have to know what they
do).
In any case, the last written function should be the one which answers the question.

2 Duration : 2h

1



Algorithmics
Final Exam #3 (P3) – January 5, 2021 - 9 : 30

Undergraduate 2nd year - S3
Epita

Exercise 1 (In the depth of the spanning forest – 3 points)

Figure 1: A digraph

1. Build the spanning forest of the graph G for the depth first search from vertex 0. Vertices are encountered
in increasing order. Add to the forest the various kinds of edges met during the traversal, with an explicit
legend.

2. Fill-in the vectors containing the meeting order of vertices in prefix and suffix established with a single
counter starting at 1 corresponding of the previous traversal.

Exercise 2 (Union-Find – 4 points)

Let G be the graph < S,A > with vertices numbered from 0 to 13. The algorithms seen in lecture find
(with path compression) and union (union by rank) give the following vector p from the list of edges A:

0 1 2 3 4 5 6 7 8 9 10 11 12 13
p 5 8 5 8 11 -4 5 10 -6 12 8 12 -4 8

1. Give the number of vertices of each connected component of G (the order does not matter).

2. Which additional edges will be enough to make the graph connected?

3. Among the following chains, which can not exist in G?

• 3 ! 7

• 11 ! 6

• 0 ! 13

• 4 ! 9

4. We add the edge 7 – 4 to the graph G (with union by rank and path compression). Give the new vector
p.

2



Algorithmics
Final Exam #3 (P3) – January 5, 2021 - 9 : 30

Undergraduate 2nd year - S3
Epita

Exercise 3 (Distance from start – 5 points)

Figure 2: Digraph G1

The aim here is to find the set of vertices whose distance from a starting vertex is in the interval [dmin, dmax].
Write the function dist_range(G, src, dmin, dmax) that returns the list of vertices that are at a dis-

tance between dmin and dmax from the vertex src in the graph G (with 0 < dmin ≤ dmax).

1 >>> dist_range(G1 , 0, 2,3)
2 [4, 5, 9, 7, 8, 10]
3

4 >>> dist_range(G1 , 0, 2,2)
5 [4, 5, 9]
6

7 >>> dist_range(G1 , 0, 1,2)
8 [1, 2, 3, 6, 4, 5, 9]

Exercise 4 (Get cycle – 5 points)

Using imperatively a depth-first search, write the function get_cycle(G) that searches for a cycle in
the undirected graph G. If a cycle is found (any one, see examples below), the function returns it as a vertex
list. Otherwise the function returns an empty list.

Figure 3: Graph G2

Examples of different results (different versions of the function) on the graph in figure 3:

1 >>> get_cycle(G2)
2 [1, 0, 8, 2, 1]
3

4 >>> get_cycle_2(G2)
5 [0, 8, 2, 1, 0]
6

7 >>> get_cycle_3(G2)
8 [1, 2, 3, 1]

3



Algorithmics
Final Exam #3 (P3) – January 5, 2021 - 9 : 30

Undergraduate 2nd year - S3
Epita

Exercise 5 (What is this? – 3 points)

The following functions are defined:

1 def __build(G, x, D, P, NG):
2 for y in G.adjlists[x]:
3 if D[y] == None:
4 D[y] = D[x] + 1
5 __build(G, y, D, P, NG)
6 NG.addedge(x, y)
7 else:
8 if D[y] < D[x] and not P[y]:
9 NG.addedge(x, y)

10 P[x] = True
11

12 def build(G):
13 D = [None] * G.order
14 P = [False] * G.order
15 NG = Graph(G.order , True)
16 for s in range(G.order):
17 if D[s] == None:
18 D[s] = 0
19 __build(G, s, D, P, NG)
20 return NG Figure 4 – Digraph G4

1. Draw the graph resulting of the call build(G4) where G4 is the digraph in figure 4 (adjacency lists are
sorted in increasing order).

2. For each vertex s, during the traversal:

(a) What does D[s] represent?

(b) What does P[s] represent?

4



Algorithmics
Final Exam #3 (P3) – January 5, 2021 - 9 : 30

Undergraduate 2nd year - S3
Epita

Appendix
Classes Graph and Queue are assumed to be imported.

Graphs

All exercises use the implementation with adjacency lists of graphs.
Graphs we manage cannot be empty. There is neither multiple edges nor loops.

1 class Graph:
2 def __init__(self , order , directed = False):
3 self.order = order
4 self.directed = directed
5 self.adjlists = []
6 for i in range(order):
7 self.adjlists.append ([])
8

9 def addedge(self , src , dst):
10 self.adjlists[src]. append(dst)
11 if not self.directed and dst != src:
12 self.adjlists[dst]. append(src)

Queues

• Queue() returns a new queue

• q.enqueue(e) enqueues e in q

• q.dequeue() returns the first element of q, dequeued

• q.isempty() tests whether q is empty

Others

• range

• min, max

• on lists:

– len(L)

– L.append(elt)

– L.pop()

– L.pop(index)

– L.insert(index, elt)

and any operator. . .

Your functions
You can write your own functions as long as they are documented (we have to know what they do).

In any case, the last written function should be the one which answers the question.

5


