Algorithmics Final Exam \#3 (P3)

Undergraduate $2^{\text {nd }}$ year - S3
Epita

17 December 2019-9:30

Instructions (read it) :

You must answer on the answer sheets provided.- No other sheet will be picked up. Keep your rough drafts.
- Answer within the provided space. Answers outside will not be marked: Use your drafts!
- Do not separate the sheets unless they can be re-stapled before handing in.
- Penciled answers will not be marked.

The presentation is negatively marked, which means that you are marked out of 20 points and the presentation points (maximum of 2) are taken off this grade.

Code:

- All code must be written in the language Python (no C, Caml, Algo or anything else).
- Any Python code not indented will not be marked.
- All that you need (classes, types, routines) is indicated where needed!
- You can write your own functions as long as they are documented (we have to know what they do). In any case, the last written function should be the one which answers the question.

Duration : 2 h

Exercise 1 (Implementation and questions - 2 points)

Imagine a simple undirected graph G of 9 vertices represented by the following adjacency matrix:

	1	2	3	4	5	6	7	8	9
1		V	V						
2	V								
3	V			V	V				
4			V			V	V		
5			V						
6				V					
7				V				V	V
8							V		
9							V		

1. Give two graph properties that the transitive closure of G has.
2. Give the Depth-First Search postorder list of vertices of G. As usual, you will start from the vertex 1 and assume that the successors are met in increasing order.

Exercise 2 (Warshall-Union-Find - 4 points)

Let G be the graph $<S, A>$ with vertices numbered from 0 to 13. The Warshall algorithm seen in lecture built the following matrix (no value $=$ false, $1=$ true) from G :

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1			1	1				1				1	
1		1						1		1	1			
2			1			1						1		
3	1			1	1				1				1	
4	1			1	1				1				1	
5			1			1						1		
6							1							1
7		1						1		1	1			
8	1			1	1				1				1	
9		1						1		1	1			
10		1						1		1	1			
11			1			1						1		
12	1			1	1				1				1	
13							1							1

1. What are the connected components (vertex sets) of the graph G ?
2. The algorithms find and union (non-optimized versions) are applied the list of edges A of G.

Among the following vectors, which could correspond to the result?

$$
\begin{aligned}
& \begin{array}{c}
\\
P_{3}
\end{array} \begin{array}{c}
0 \\
0
\end{array} \mathbf{1}
\end{aligned}
$$

Exercise 3 (I want to be tree - 5 points)

Définition :

A tree is an acyclic connected graph.
Using imperatively a depth-first search, write the function isTree that tests whether a graph is a tree.

Exercise 4 (Distances and center - 6 points)

Definitions

- The distance between two vertices in a graph is the number of edges in a shortest path connecting them.
- The eccentricity of a vertex x in $G=<S, A>$ is defined by:

$$
\operatorname{exc}(x)=\max _{y \in S}\{\operatorname{distance}(x, y)\}
$$

- The radius of a graph is the minimum eccentricity of its vertices. That is to say, the shortest distance a vertex can be from other points in the graph.
- The center of a graph is the set of vertices with eccentricity equal to the graph's radius (vertices of minimum eccentricity).

Write the function center (G) that returns the center of the graph G (a list).

In the graph G_{6} :
Vertices 0,4 and 6 are of eccentricity 3.
Vertices 3 and 11 are of eccentricity 5 .
Remaining vertices are of eccentricity 4.
The radius of G_{6} is 3 and the vertices 0,4 and 6 constitute its center.

```
>>> center(G6)
[0, 4, 6]
```


Exercise 5 (What is this? - 3 points)

```
import Graph, Queue
def __aux(G, v, m, res, count):
    q = Queue()
    q.enqueue(v)
    m[v] = True
    while not q.isempty():
        cur = q.dequeue()
        res[cur] = count
        count += 1
        for succ in G.adjlists[cur]:
        if not m[succ]:
            m[succ] = True
            q. enqueue(succ)
    return count
def mystery(G, src):
    m = [False] * G.order
    res = [0] * G.order
    count = __aux(G, src, m, res, 0)
    for v in range(G.order):
        if not m[v]:
            count = __aux(G, v, m, res, count)
    NG = Graph(G.order, directed=G.directed)
    for v in range(G.order):
        for s in G.adjlists [v]:
            if G.directed or res[v] <= res[s]:
                NG.addedge(res[v], res[s])
    return NG
```


Figure 4 - Graph G_{4}

1. Draw the graph resulting of the call mystery $\left(G_{4}, 0\right)$ (vertices are encountered in increasing order) where G_{4} is the graph of the figure 4 .
2. List the vertices in order of encounter during this run.
3. From a graph with k connected components, how many connected components the graph produced by the function mystery will have?

Appendix

Classes Graph and Queue are supposed imported.

Graphs

All exercises use the implementation with adjacency lists of graphs.
Graphs we manage cannot be empty.

```
class Graph:
    def __init__(self, order, directed = False):
        self.order = order
        self.directed = directed
        self.adjlists = []
        for i in range(order):
            self.adjlists.append([])
```


Queues

Others

- Queue() returns a new queue
- q.enqueue (e) enqueues e in q
- q.dequeue() returns the first element of q, dequeued
- q.isempty() tests whether q is empty
- range
- on lists:
- len(L)
- L.append()
- L.pop()
- L.insert(index, elt)

Your functions

You can write your own functions as long as they are documented (we have to know what they do). In any case, the last written function should be the one which answers the question.

