D • /			_										
First name		Gr	ade										
Group													
	Algorithmica		1										
	2												
	3												
	${\bf Final \ Exam \ \#3 \ (P3)}$												
	18 December 2018 - 9:30												
	Answer Sheets	•	6										
Answers 1 (Wai	$cshall - Union-Find - 3 \ points)$)											
1. Connected co	omponents (vertex sets):												
1. Connected co C_1 :	omponents (vertex sets):	$C_2:$											
1. Connected co C_1 :	omponents (vertex sets):	$C_2:$											
1. Connected co C ₁ : :	omponents (vertex sets):	C_2 :											
 Connected constraints C₁ : : 2. Which vector 	rs could correspond to the result?	$C_2:$											

Answers 2 (In the depth of the spanning forest -2 points)

Spanning forest and extra-edges for the depth-first search of the graph in figure 1:

Answers 3 (Components – 3 points)

Specifications:

The function components (G) returns the pair (k, cc) with k the number of connected components of the graph G and cc is the component vector.

Answers 4 (Diameter - 5 points)

Specifications:

The function diameter (G) computes the diameter of G (G is a tree).

	-		1		 		-				 		-		
									<u> </u>						
-															
<u> </u>															
														-	

Answers 5 (Euler – 6 points)

Specifications:

The function Euler(G) tests whether the simple G graph is *Eulerian*.

													-	
<u> </u>														
		1				1		1	1			1	1	

Answers 6 (What is this? -3 points)

1. Result returned by what (G_4) :

2. d represents:

3. lc represents: