Contrôle de cours APEF (1 heure)

Nom:	Prénom :	Classe:	Classe:	
N.B. : Le barème est sur 20 points.		Note:	/20	
l Polynômes (8 poir	nts)			
Cours 1 : divisibilité et di	ivision euclidienne (2,5 points)			
Les questions sont indépendantes.	,			
1. Soient P et B deux polynôme.	mes de $\mathbb{R}[X]$ tels que la division exclidienn	ne de P par B se traduit par l	'égalité suivante :	
	$P(X) = (X+2)(X^3+1) + 2X$	$X^2 - X + 2$		
Déterminer B ainsi que le r	reste de cette division euclidienne dans ce	cas. Justifier.		
			m	
2. Trouver le quotient et le re-	ste de la division euclidienne de $A(X) = -$	$-X^4 + 3X - 5 \text{ par } B(X) = X^2$	+1.	
Cours 2 : autour des raci	nes (5,5 points)			
	Pour les questions 2., 3. et 4., ce n'est pas	la peine de donner les porynor	mes sous une form	
1. Soit $P \in \mathbb{R}[X]$ de degré stri	ctement supérieur à 3. Mettre les symbole	es \Longrightarrow , \Longleftrightarrow ou \Longleftrightarrow à la place	des pointillés.	
a) -1 racine de P	$(X+1) P$ b) $(X-1)^2 P$ $P(X+1)^2 P$	(1) = 0 c) $P(0) = 0$	$P(X) = X^4 + X$	
$d) P(1) = P(2) = 0 \dots$	$(X-1)(X-2) P$ e) $(X-1)^3 P$	$P(1) = P'(1) = 0$		
2. Donner un exemple d'un po	olynôme $P \in \mathbb{R}[X]$, de degré 3 ayant -1 et	t 2 comme racines simples.		
3. Donner un exemple d'un po égal à 3.	lynôme de $Q \in \mathbb{R}[X]$, de degré 5 ayant -2	comme racine d'ordre dé mult	iplicità exadtement	
_				
	olynôme de $A \in \mathbb{R}[X]$, de degré 4 vérifiant		*	
*******************************	. 🛩	· · · · · · · · · · · · · · · · · · ·	,	
1 11 /- 11 ·	oi dessous, entouror les polynômes imédue	etibles dans $\mathbb{R}[X]$.		
	ci-dessous, entourer les polynômes irréduc			

2 Équations différentielles (6 points)

Soient a, b et c trois fonctions continues sur \mathbb{R} telles que $\forall t \in \mathbb{R}, a(t) \neq 0$.

On considère l'équation différentielle (E): a(t)y'(t) + b(t)y(t) = c(t).

On note S l'ensemble des solutions de (E) et S_0 l'ensemble des solutions de (E_0) l'équation homogène accociée à (E).

1. Donner S_0 .

- 2. Soit y_p une solution particulière de (E) sur \mathbb{R} . Notons $B=\{y_p+y_0\,;\;y_0\in S_0\}$.
 - (a) Dans le texte ci-dessous, continuer naturellement les phrases incomplètes (là où il y a des pointillés. Vous pouvez rajouter des lignes si besoin).

Soit $f \in B$. Pour tout $t \in \mathbb{R}$, on a $f(t) = \dots$ avec $y_0 \in S_0$.

f est dérivable sur $\mathbb R$ et $\forall\,t\in\mathbb R,\,f'(t)=\ldots$

Ainsi,

 $\forall t \in I, \ a(t)f'(t) + b \mathcal{D} f(t) := \dots$

= car

Donc $f \in \dots$

- (b) Entourer l'inclusion que vous venez de démontrer : a) $S \subset B$
- b) $B \subset S$
- (c) Démontrer que S = B en faisant l'autre inclusion.

3. Trouver a, b et c trois fonctions telles que l'équation (E) : a(t)y' + b(t)y = c(t) ait pour ensemble de solutions :

$$S = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & , k \in \mathbb{R} \\ t & \longmapsto & ke^{\arctan(t)} + 1 \end{array} \right\}$$

3 Développements limités usuels (6 points)

Donner pour chaque fonction ci-dessous le développement limité en 0 à l'ordre 3.

1. $e^x = \dots$	

$$2. \cos(x) = \dots$$

3.
$$\ln(1+x) = \frac{1}{2}$$

4.
$$\sin(x) = \dots$$

5. Soit
$$\alpha \in \mathbb{R}$$
, $(1+x)^{\alpha} = \dots$

6. (Pour celui-là, vous détaillerez les calculs)
$$f: x \longmapsto \sqrt{1+x}$$