

Examen Physique : Mécanique (1h30)

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

<u>Exercice 1.</u> Questions de cours (5 points – pas de points négatifs pour le QCM). Pour certaines questions il faut cocher plusieurs bonnes réponses.

- 1. L'unité du travail W est :
 - a. Le Newton
 - b. Le Joule

- c. La même que celle de la force
- d. La même que celle de l'énergie

- 2. Un travail W > 0 est dit:
 - a. Résistif
 - b. Récursif

- Moteur
- d. Accélérateur
- 3. Si une force est perpendiculaire au déplacement le travail est :
 - a. Nul

c. Négatif

b. Maximum

- d. Dépend de la norme de la force
- 4. La cinématique est la branche de la physique qui s'intéresse :
 - a. Au mouvement indépendamment des causes les produisant

- c. Au cinéma
- d. Aucune des réponses

- b. A la cause des mouvements
- 5. Dans le système de coordonnées polaires, le vecteur position s'écrit :

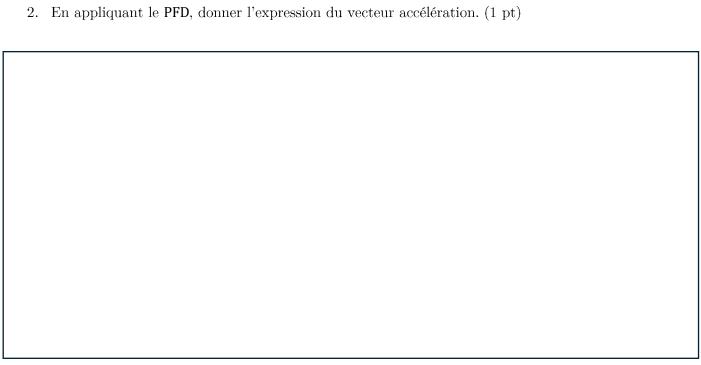
a.
$$\overrightarrow{OM} = r.\overrightarrow{u_r}$$

b.
$$\overrightarrow{OM} = \begin{pmatrix} r \\ 0 \end{pmatrix}$$

c.
$$\overrightarrow{OM} = \begin{pmatrix} 0 \\ r \end{pmatrix}$$

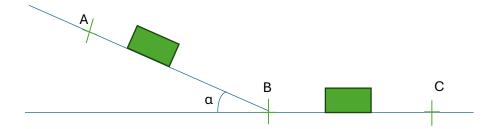
d. $\overrightarrow{OM} = \begin{pmatrix} r \\ \theta \end{pmatrix}$

d.
$$\overrightarrow{OM} = \begin{pmatrix} r \\ \theta \end{pmatrix}$$


Exercice 2: Lancer de javelot (8 pts)

On lance un javelot de masse m = 0,8kg à partir d'un point A situé à une hauteur h=1,95m au-dessus du sol. Sa vitesse initiale est de norme $v_0=10~\mathrm{m/s}$ et fait un angle $\alpha=30^\circ$ avec l'horizontale. On prendra l'intensité de l'accélération de la pesanteur g=10m.s⁻². Les frottements avec l'air seront négligés.

1.	Donner le cadre d'é	étude (référentiel,	système étudié,	système d	le coordonnées). (1	pt)
----	---------------------	---------------------	-----------------	-----------	----------------	------	---	-----



3.	Donner l'expression du vecteur vitesse. Utiliser les conditions initiales pour déterminer la constante d'intégration. (1 pt)
4.	Donner l'expression du vecteur position. Utiliser les conditions initiales pour déterminer la constante d'intégration. (1 pt)
5.	Etablir l'équation de la trajectoire, c'est-à-dire, $y(x)$. Quelle est le type de trajectoire ? (1 pt)

6.	Quelle est la durée écoulée avant que le javelot touche le sol ? Réaliser l'application numérique. (2 pts)
7.	A quelle distance de l'origine se situe le point d'impact ? Réaliser l'application numérique. (1 pt)

Exercice 3: Etude énergétique (7 pts)

Une boîte rectangulaire de masse m = 0,1 kg est lâchée du point A sans vitesse initiale. On suppose les frottements négligeables sur le trajet AB, et nommerons \vec{f} la force de frottement sur la partie BC.

Données: $\alpha = 30^{\circ}$ et $g = 10 \text{ m.s}^2$, AB = 10m

Pour aider aux calculs, on donne: $sin(30) = cos(60) = \frac{1}{2}$; $cos(30) = sin(60) = \frac{\sqrt{3}}{2}$

- 1. Représenter les forces extérieures exercées sur la boîte rectangulaire au cours du trajet AB. (1 pt)
- 2. Donner l'expression du travail des forces exercées sur la boîte rectangulaire au cours du trajet AB en fonction de la masse m, de la distance AB et de l'angle α et l'intensité de l'accélération de pesanteur g. (1 pt)

3. Sur quelle partie du trajet peut-on utiliser le théorème de l'énergie mécanique ? Justifier votre réponse (1pt)

4.	Utiliser le théorème de l'énergie mécanique entre A et B pour en déduire la vitesse en B. Réaliser l'application numérique. (1 pt)			
5. 6.				
7.	Utiliser le théorème de l'énergie cinétique entre B et C pour calculer la distance parcourue BC sachant que la boîte rectangulaire s'arrête en C. Réaliser l'application numérique. La force de frottement est constante, de valeur $f=0.20~N.~(1~{\rm pt})$			