PHYSICS TEST

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercise 1. Lecture questions [2.5 POINTS](No negative points)

Select the correct answer

- 1. A motion is said uniform if
 - a. Its trajectory is a straight line.
 - b. Its acceleration is constant over time.
 - c. Its velocity is constant over time.
 - d. Its velocity and acceleration vary very few over time.
- 2. In polar coordinates, $(\overrightarrow{u}_{\rho}, \overrightarrow{u}_{\theta})$, position vector $\overrightarrow{r}(t) = \overrightarrow{OM}(t)$ has for expression:

a.
$$\vec{r}(t) = \rho \overrightarrow{u}_{\rho} + \theta \overrightarrow{u}_{\theta}$$

c.
$$\vec{r}(t) = \theta \overrightarrow{u}_{\rho} + \rho \overrightarrow{u}_{\theta}$$

b.
$$\vec{r}(t) = \rho \overrightarrow{u}_{\rho}$$

$$d. \vec{r}(t) = \rho \overrightarrow{u}_{\theta}$$

- 3. A moving particle has a rectilinear trajectory along the X-axis. Its trajectory equation is $x(t) = 10 2t^2$.
 - a. The motion is uniform.
 - b. The motion is uniformly circular.
 - c. Le mouvement est decelerated.
 - d. Acceleration magnitude is $2 m/s^2$
- 4. Consider a moving particle whose position at each instant t is given by its position vector $\vec{r}(t) = \overrightarrow{OM}(t)$. Acceleration vector $\vec{a}(t)$ of this motion has for expression:

a.
$$\overrightarrow{a}(t) = \frac{dr(t)}{dt^2}$$

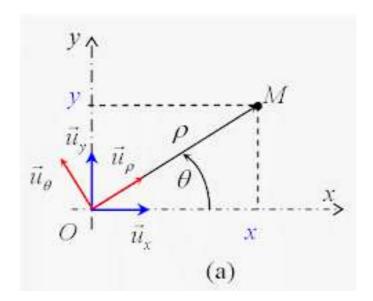
c.
$$\overrightarrow{a}(t) = \left[\frac{d\overrightarrow{r}(t)}{dt}\right]^2$$

b.
$$\overrightarrow{a}(t) = \frac{d^2 \overrightarrow{r}(t)}{dt^2}$$

$$d. a(t) = \sqrt{r(t)}$$

5. Two vectors are perpendicular if their scalar product is equal to zero.

a. TRUE


b. FALSE

EPITA / InfoS1

PHYSICS TEST

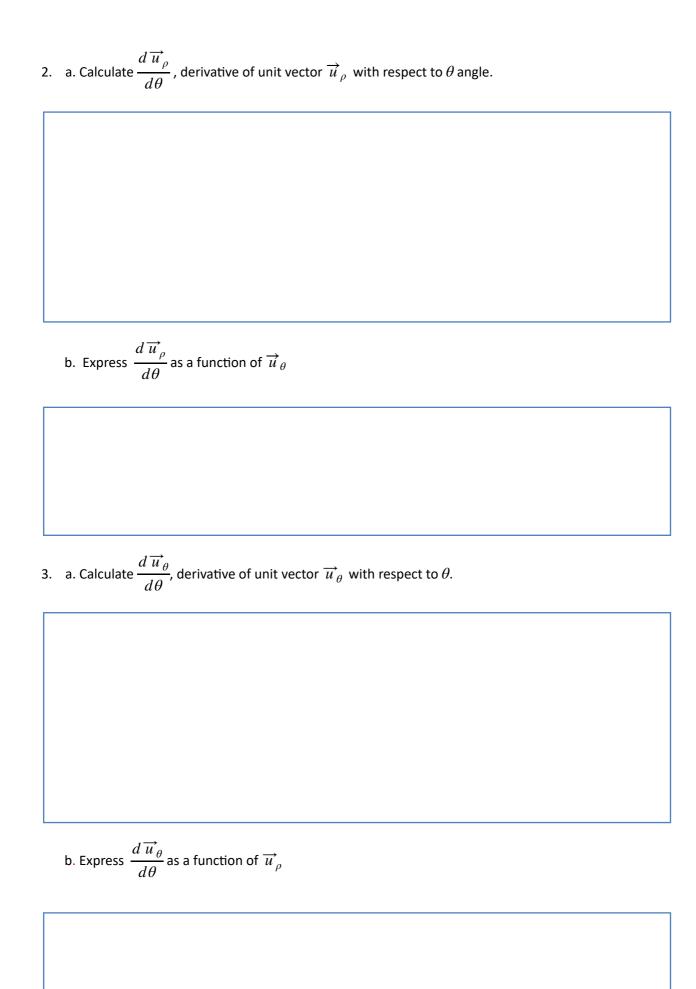
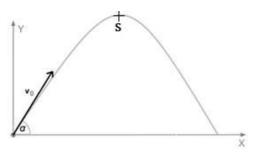

EXERCISE 2: CARTESIAN AND POLAR COORDINATES [8 POINTS]

Diagram below shows on the same plane, polar and cartesian coordinates representations.

1. Express $\overrightarrow{u}_{\rho}$ and $\overrightarrow{u}_{\theta}$, the unit vectors of the polar basis, as functions of θ and cartesian unit vectors \overrightarrow{u}_x and \overrightarrow{u}_y .

EPITA / InfoS1 PHYSICS TEST NOVEMBER 2021 2/7


4.	M point represents position of a moving particle. Express its position vector $\vec{r}(t) = OM(t)$ in cartesian basis and in polar basis.
5.	Give the general expression of velocity vector $\overrightarrow{v}(t)$ and then give its expression in polar basis. Detail your calculations.

EPITA / InfoS1 PHYSICS TEST NOVEMBER 2021 4/7

EXERCISE 3: MOTION OF A PROJECTILE [5,5 POINTS]

Consider a projectile launched from the origin point (0;0) of a cartesian frame at instant $t=0\,$ s. It is

launched by forming an angle α with the X-axis. S point, called the apex, corresponds to the top of the trajectory.

$$\vec{r}(t) = \overrightarrow{OM}$$
, the position vector, is :

$$\overrightarrow{OM} = \left(v_0 \cos \alpha \right) . t \overrightarrow{u}_x + \left[\left(v_0 \sin \alpha \right) . t - 5t^2 \right] \overrightarrow{u}_y$$

1. a. Give the hourly equations, x(t) and y(t), of this motion.

b. Give the trajectory equation of this motion.

EPITA / InfoS1		PHYSICS TEST	NOVEMBER 2021	5/7
b. Give the trajec	tory equation or this i	notion.		

۷.	Give the expression of velocity vector $v(t)$. Express its magnitude.
3.	At the top of trajectory, V_y (the Y-axis component of velocity vector) is equal to zero. Calculate the maximal height reached by the projectile as a function of V_0 et α angle.
	The maximal neight reached by the projectile as a function of valet (Cangle).
	the maximum neight readiled by the projectile as a famotion of vijet a angle.

EPITA / InfoS1 PHYSICS TEST NOVEMBER 2021 6/7

EXERCISE 4: ACCELERATION IN POLAR COORDINATES [4 POINTS]

L.	What is	the accelerat	ion expressi	on if the mo	otion is circular	? Justify your	answer.	
		the acceler Justify your		r expression	if the motion	n, in addition	of being circu	lar, is also
				r expression	if the motion	n, in addition	of being circul	lar, is also
				r expression	if the motion	n, in addition	of being circu	lar, is also
				r expression	if the motion	n, in addition	of being circu	lar, is also
				r expression	if the motion	n, in addition	of being circu	lar, is also
				r expression	if the motion	n, in addition	of being circu	lar, is also
				r expression	if the motion	n, in addition	of being circu	lar, is also
				r expression	if the motion	n, in addition	of being circu	lar, is also
				r expression	if the motion	n, in addition	of being circul	lar, is also

EPITA / InfoS1 PHYSICS TEST NOVEMBER 2021 **7/7**