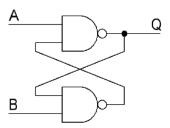
Midterm Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.


Do not use a pencil or red ink.

Exercise 1 (9 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).
- 3. Determine the smallest and largest absolute values of a double-precision IEEE-754 **denormalized** number. Use the following form: 2^n for the smallest number and $(1 2^{n1}) \times 2^{n2}$ for the largest number where n, n1 and n2 are integers (either positive or negative). Write down the base-10 numerical values of n, n1 and n2 on the <u>answer sheet</u>.

Exercise 2 (3 points)

Let us consider the following circuit:

- 1. Complete the truth table shown on the <u>answer sheet</u>.
- 2. What is the name of this circuit?

Exercise 3 (1 point)

Draw the circuit diagram of a divide-by-two circuit by using only one master-slave RS flip-flop. Answer on the answer sheet.

Midterm Exam S2 1/4

Exercise 4 (7 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.

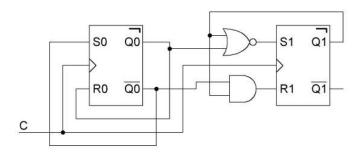


Figure 1

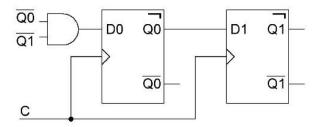


Figure 2

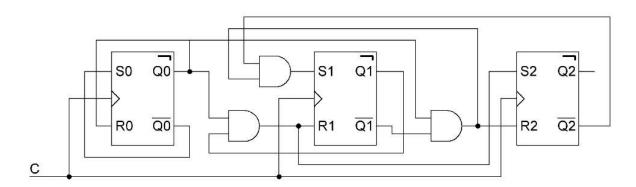


Figure 3

Midterm Exam S2 2/4

Last name: Group: Group:

			P	ANSWE	R SHE	ET		
Exercise 1								
1. Number S E					M			
257								
78.1875								
0.109375	5							
2.								
	IEEE-7	54 Represer	itation			Associ	iated Representation	
2A48 0000 0000 0000 ₁₆								
FFF0 0000 0000 000F ₁₆								
000B C000 0000 0000 ₁₆								
	4000 (0000 0000 00	00016					
3.								
n				n1			n2	
Exercise 2			_					
Г	Α	В	Q	1				
	0	0		1		Na	me of the circuit	
	0	1		1				
	1	0						
L	1	1]				┙
Exercise 3								
			D	ivide-by-	Two Cir	cuit		

Exercise 4

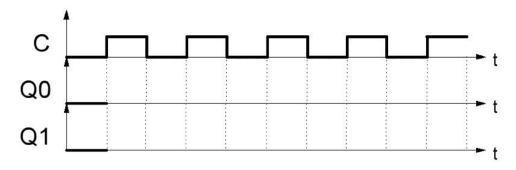


Figure 1

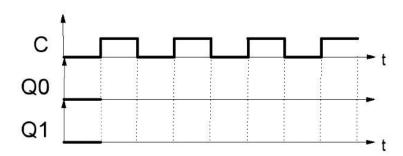


Figure 2

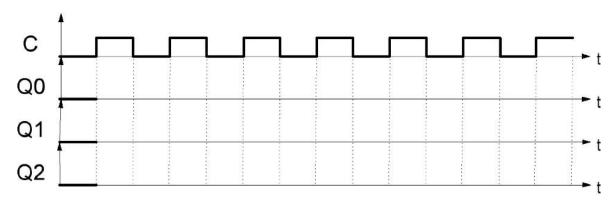


Figure 3

Feel free to use the blank space below if you need to:

