Key to Midterm Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use a pencil or red ink.

Exercise 1 (9 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).
- 3. Determine the smallest and largest absolute values of a double-precision IEEE-754 **denormalized** number. Use the following form: 2^n for the smallest number and $(1 2^{n1}) \times 2^{n2}$ for the largest number where n, n1 and n2 are integers (either positive or negative). Write down the base-10 numerical values of n, n1 and n2 on the <u>answer sheet</u>.

Exercise 2 (3 points)

Let us consider the following circuit:

- 1. Complete the truth table shown on the <u>answer sheet</u>.
- 2. What is the name of this circuit?

Exercise 3 (1 point)

Draw the circuit diagram of a divide-by-two circuit by using only one master-slave RS flip-flop. Answer on the answer sheet.

Exercise 4 (7 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.

Figure 1

Figure 2

Figure 3

Last name: Group: Group:

ANSWER SHEET

Exercise 1

1.

Number	S	E	M
257	0	10000111	000000100000000000000
78.1875	0	10000101	0011100011000000000000
0.109375	0	01111011	11000000000000000000000

2.

IEEE-754 Representation	Associated Representation
2A48 0000 0000 0000 ₁₆	3 × 2 ⁻³⁴⁸
FFF0 0000 0000 000F ₁₆	NaN
000B C000 0000 0000 ₁₆	47 × 2 ⁻¹⁰²⁸
4000 0000 0000 000016	1× 2¹

3.

n	n1	n2
-1074	-52	-1022

Exercise 2

A	В	Q
0	0	1
0	1	1
1	0	0
1	1	q

Name of the circuit
Active-low RS latch

Exercise 3

Exercise 4

Figure 1

Figure 2

Figure 3

Feel free to use the blank space below if you need to:

