Key to Midterm Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>. Do not show any calculation unless you are explicitly asked. Do not use red ink.

Exercise 1 (5 points)

Answer on the answer sheet. Let us consider the following 10-bit binary number: 1001011010₂.

- 1. Write down its hexadecimal representation.
- 2. Assuming that it is an unsigned integer, write down its decimal representation.
- 3. Assuming that it is a signed integer, write down its decimal representation.
- 4. Write down the 8-bit binary representation of the following unsigned number: 128₁₀.
- 5. Write down the 8-bit binary representation of the following signed number: -128_{10} .
- 6. Determine the minimum number of bits required to encode the following unsigned number: 2^{42} ?
- 7. Determine the minimum number of bits required to encode the following signed number: -2^{42} ?
- 8. Determine the minimum number of bits required to encode the following signed number: 2^{42} ?
- 9. How many bytes does the value 1 Mib contain? Use a power-of-two notation.
- 10. How many bits does the value **256 KiB** contain? Use binary prefixes (Ki, Mi or Gi) and choose the most appropriate prefix so that the integer numerical value will be as small as possible.

Exercise 2 (7 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 3 (3 points)

For each question in this exercise, choose only one correct answer from these five:

- The output is always 0.
- The output is always 1.
- The output never changes.
- The output toggles on each negative edge of the clock signal.
- We do not know.

Let us consider a master-slave JK flip-flop:

- 1. How does the output behave if J = K = 1?
- 2. How does the output behave if J = 1 et K = Q?
- 3. How does the output behave if $J = \overline{Q}$ et K = Q?

Exercise 4 (5 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.

Figure 1

Figure 2

Last name: First name: Group:

ANSWER SHEET

Exercise 1

1. 25A ₁₆	6. 43 bits
2. 602 ₁₀	7. 43 bits
3422_{10}	8. 44 bits
4. 1000 0000 ₂	9. 2^{17} octets
5. 1000 0000 ₂	10. 2 Mib

Exercise 2

1.

Number	S	E	Μ
-88	1	10000101	011000000000000000000000000000000000000
45.375	0	10000100	011010110000000000000000
0.375	0	01111101	100000000000000000000000000000000000000

2.

IEEE-754 Representation	Associated Representation
432100000000000 ₁₆	17×2^{47}
$FFFFFFFFFFFFFFFFF_{16}$	NaN
7FF0000000000000 ₁₆	-∞+
800240000000000016	-9×2^{-1028}

Exercise 3

- 1. The output toggles on each negative edge of the clock signal.
- 2. The output toggles on each negative edge of the clock signal.
- 3. The output toggles on each negative edge of the clock signal.

Exercise_4

Feel free to use the blank space below if you need to: