Nom	
Prénom	
Groupe	

Note 18/20

Algorithmique Arbres binaires et généraux

SUP S2 EPITA

Examen B3
12 mars 2024

7/7 5/7 3/3

Consignes (à lire):

- □ Vous devez répondre directement sur ce sujet.
 - Répondez dans les espaces prévus, les réponses en dehors ne seront pas corrigées.
 - Aucune réponse au crayon de papier ne sera corrigée.
- □ La présentation est notée en moins, c'est à dire que vous êtes noté sur 20 et que les points de présentation (2 au maximum) sont retirés de cette note.

□ Code:

- Tout code doit être écrit dans le langage Python (pas de C, CAML, ALGO ou autre).
- Tout code Python non indenté ne sera pas corrigé.
- Tout ce dont vous avez besoin (types, fonctions, méthodes) est indiqué en annexe.
- Vos fonctions doivent impérativement respecter les exemples d'applications donnés.
- Vous pouvez également écrire vos propres fonctions, dans ce cas elles doivent être documentées (on doit savoir ce qu'elles font).
 - Dans tous les cas, la dernière fonction écrite doit être celle qui répond à la question.
- Comme d'habitude l'optimisation est notée. Si vous écrivez des fonctions non optimisées, vous serez notés sur moins de points.

 1
- □ Durée : 1h30

Exercice 1 (Croissant- 7 points)

Écrire la fonction increasing(B) qui vérifie que chaque niveau de l'arbre binaire B contient strictement plus de nœuds que le niveau précédent.

FIGURE 1 - B4

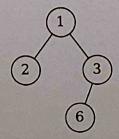


FIGURE 2 - B5

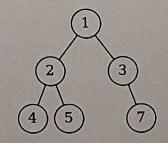


FIGURE 3 - B6

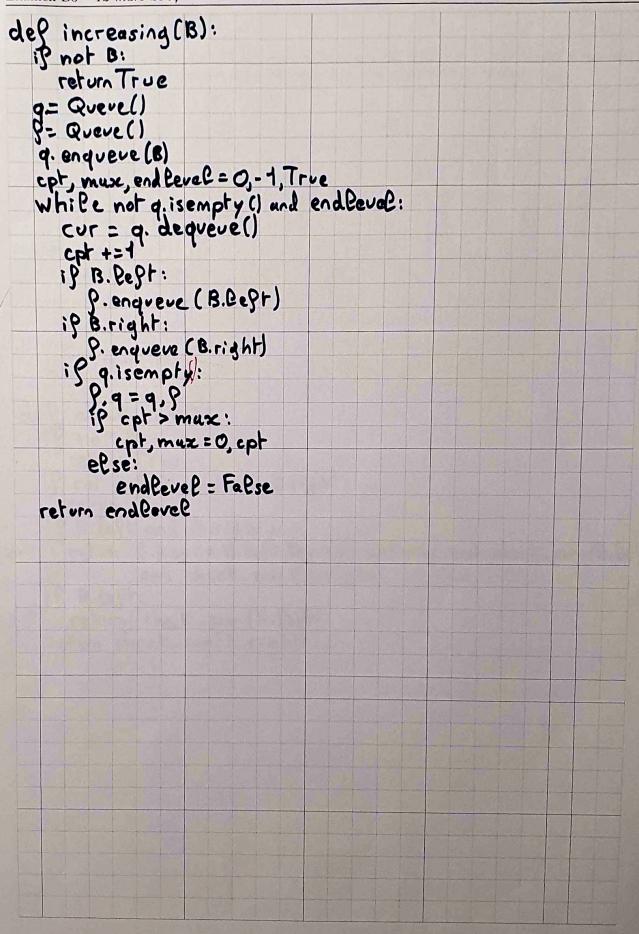
Exemples d'applications :

>>> increasing (None)

True

>>> increasing(B4)

True


>>> increasing(B5)

False

>>> increasing (B6)

True

^{1.} Des fois, il vaut mieux moins de points que pas de points.

Exercice 2 (Somme- 7 points)

Écrire la fonction check_sum(B) qui vérifie si chaque point double de l'arbre binaire B contient la somme des clés de ses deux fils. Le parcours profondeur doit obligatoirement être utilisé.

FIGURE 4 - B1

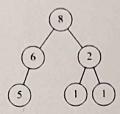


FIGURE 5 - B2

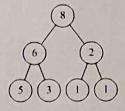


FIGURE 6 - B3

Exemples d'applications :

>>> check_sum(None)

True

>>> check_sum(B1)

True

>>> check_sum(B2)

True

>>> check_sum(B3)

False

13	not B	True								
iP	not B.	Pe9+	and n	ot B. ri	aht:					
	retum '	True								
is	B. lest	and	B.rig	ht:						
9	return	B.Ke	y == B.	legt. Re	y + B. T.	ght. Key	and	check	-sum	(B.Q
.0	B 0-01	and	check	- sum (B. righ	PJ				
-1,2	B. legt			(R 0.0)LI					
1	return ch	nec	- 300	(13.00)						
	erum ch	PECK.	SOM (B	· · · · gni						
	erum cr	ecc.	SOM (B	.,, 9,,,						
	erum cr	1666	30/4(1)							
	er ora Cr					,				
	er ora Cr	, CO.S.				,				
	er ora		30/41/3							
	er ora Cr		30/1/3			,				
	er ora Cr		30/1/3							
	er ora Cr		30/1/3							
	er ora Cr		30/1/3							
	er ora Cr									

Exercice 3 (Mystery– 3 points)

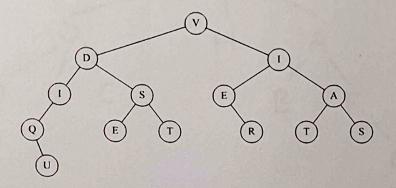
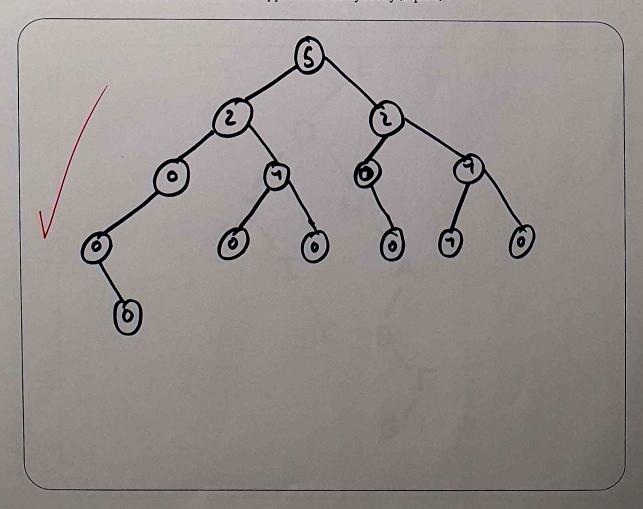
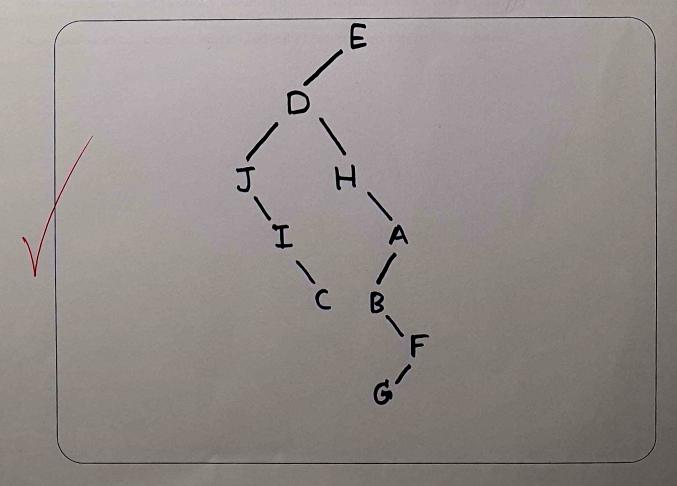



FIGURE 7 - Bquid

Dessiner ci-dessous l'arbre résultat de l'application de mystery (Bquid).

Exercice 4 (Arbre général– $3 \ points$)


Soit un arbre général ${\tt A}$. Les traitements préfixes et suffixes du parcours profondeur de ${\tt A}$ affichent les séquences suivantes :

 $\begin{aligned} & \text{pr\'efixe} = E \ D \ J \ I \ C \ H \ A \ B \ F \ G \\ & \text{suffixe} = J \ I \ C \ D \ H \ B \ G \ F \ A \ E \end{aligned}$

— Dessiner ci-dessous l'arbre général A.

— Dessiner ci-dessous l'arbre général A sous forme binaire premier fils - frère droit.

