$_{\rm QCM}^{\rm Algo}$

() ()	Dans un arbre binaire, un noeud ne possédant pas de fils est appelé? (a) une racine (b) noeud interne (c) noeud externe (d) feuille
O (Dans un arbre binaire, le chemin obtenu à partir de la racine en ne suivant que des liens gauches est? a) le chemin droit b) le bord gauche c) la branche gauche d) le chemin gauche
() () ()	Dans un arbre binaire, un noeud possédant juste 1 fils droit est appelé? a) une racine b) noeud interne c) noeud externe à droite d) point simple à droite
) (Un arbre binaire non vide est un arbre de taille? a) ≥ -1 b) ≥ 0 c) ≥ 1
) () (Un arbre binaire localement complet est un arbre binaire dont? a) tous les noeuds sont simples b) tous les niveaux sont remplis sauf le dernier rempli de gauche à droite c) tous les noeuds sont doubles sauf sur le dernier niveau d) tous les noeuds sont doubles
) () ()	Un arbre binaire dont tous les noeuds sont simples est? a) dégénéré b) parfait c) complet d) localement complet
	e) filiforme

- 7. Si LCE(B) définit la longueur de cheminement externe de B (un arbre binaire), alors PME(B) la profondeur moyenne externe de B est égale à?
- (a) LCE(B)/f avec f le nombre de feuilles de B
 - (b) LCE(B)/n avec n le nombre de noeuds de B
- (c) LCE(B)/n avec n le nombre de noeuds externes de B
 - (d) LCE(B).n avec n le nombre de noeuds externes de B
 - 8. L'arbre défini par $B = \{E, 0, 1, 00, 01, 000, 001, 0010, 0011, 00100, 00101\}$ est?
 - (a) dégénéré
 - (b) parfait
 - (c) complet
 - (d) localement complet
 - (e) quelconque
 - 9. Dans le parcours profondeur d'un arbre binaire, quels ordres sont des ordres induits?
- (a) Préfixe
- (b) Infixe
 - (c) Intermédiaire
- (d) Suffixe
- 10. Combien d'ordre de passages induit le parcours en profondeur main gauche d'un arbre binaire?
 - (a) 1
 - (b) 2
 - (c) 2 et demi
- (d) 3
 - (e) 4

QCM 2

lundi 5 février

Question 11

Soit $P(X) = (X^2 + X)(X + 1)^2 \in \mathbb{R}[X]$. On a

- a. -1 est une racine d'ordre de multiplicité exactement égale à 2 de P.
- \bigcirc b. -1 est une racine d'ordre de multiplicité exactement égale à 3 de P.
- c. P admet deux racines réelles distinctes.
 - d. Aucune des autres réponses

Question 12

Parmi les polynômes suivants, lesquels sont écrits en produits de polynômes irréductibles dans $\mathbb{R}[X]$?

- $(X(X^2+1))$
 - b. $X(X^2-1)$
- c. $X^2(X-1)^3$
 - d. Aucune des autres réponses

Question 13

Soit (E): xy' + 2y = 0. L'ensemble des solutions de (E) sur $]0, +\infty[$ est constitué des fonctions de la forme

- a. $x \longmapsto ke^{-2x}$ avec $k \in \mathbb{R}$.
- b. $x \longmapsto -kx^2$ avec $k \in \mathbb{R}$.
- - d. $x \mapsto \frac{k}{x}$ avec $k \in \mathbb{R}$.
 - e. Aucune des autres réponses

Question 14

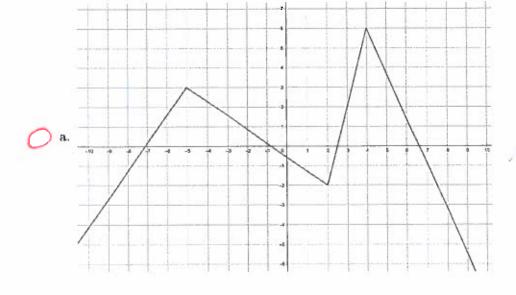
Soit $(E): y'' + 2y' - 3y = x^2$ sur \mathbb{R} . L'ensemble des solutions de l'équation homogène associée à (E) est constitué des fonctions de la forme

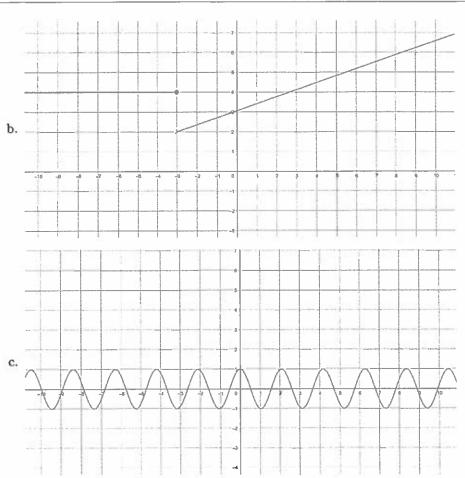
- a. $x \longmapsto k_1 e^{-x} + k_2 e^{3x}$ avec $(k_1, k_2) \in \mathbb{R}^2$.
- b. $x \longmapsto k_1 e^x + k_2 e^{-3x}$ avec $(k_1, k_2) \in \mathbb{R}^2$.
- c. $x \mapsto e^x (k_1 \cos(3x) + k_2 \sin(3x))$ avec $(k_1, k_2) \in \mathbb{R}^2$.
- d. Aucune des autres réponses

Question 15

Soit (E): $y'' - y' + y = 3x^3 - 1$. Pour trouver une solution particulière y_p de (E), on peut chercher y_p de la forme d'un polynôme

- a. de degré 1
- b. de degré 2
- c. de degré 3
 - d. Aucune des autres réponses


Question 16


Soit (E): y'' + y' + y = x + 1.

- \bigcap a. La fonction $y: x \longmapsto x$ est une solution particulière de (E)
 - b. La fonction $y:x\longmapsto x^2$ est une solution particulière de (E)
 - c. La fonction $y: x \longmapsto 2x$ est une solution particulière de (E)
 - d. Aucune des autres réponses

Question 17

Parmi les fonctions suivantes, la(les)quelle(s) est(sont) continue(s) sur [-8,8]?

d. Aucune des fonctions ci-dessus n'est continue sur [-8,8].

Question 18

Soit f une fonction définie et continue sur \mathbb{R} telle que f(-2)=4 et f(3)=-1. On a

- 0
- a L'équation f(x) = 0 admet au moins une solution sur \mathbb{R} .
- b. L'équation f(x) = 0 admet exactement une solution sur \mathbb{R} .
- c. Nous n'avons pas assez d'informations pour savoir si l'équation f(x) = 0 admet au moins une solution sur \mathbb{R} .

Question 19

Soit f une fonction dérivable une infinité de fois sur $\mathbb R$. La formule de Taylor-Young au voisinage de 0 à l'ordre 3 donne

a.
$$f(x) = f(0) + xf'(0) + x^2f''(0) + x^3f^{(3)}(0) + x^3\varepsilon(x)$$
 avec $\lim_{x\to 0} \varepsilon(x) = 0$.

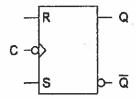
b.
$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \frac{x^3}{3}f^{(3)}(0) + x^3\varepsilon(x)$$
 avec $\lim_{x\to 0} \varepsilon(x) = 0$.

- c. $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f^{(3)}(0) + x^3\varepsilon(x)$ avec $\lim_{x\to 0} \varepsilon(x) = 0$.
 - d. Aucune des autres réponses

Question 20

Soit $f: x \longmapsto x^{10}$. La formule de Taylor-Young pour f en 0 à l'ordre 3 est

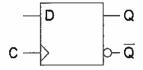
- 0
 - a. $f(x) = 0 + x^3 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$
 - b. $f(x)=1+10x+45x^2+120x^3+x^3\varepsilon(x)$ avec $\lim_{x\to 0}\varepsilon(x)=0$
 - c. Aucune des autres réponses


QCM 1

Architecture des ordinateurs

Lundi 5 février 2024

Pour toutes les questions, une ou plusieurs réponses sont possibles.


21. Que représente le symbole ci-dessous?

- A. Une bascule RS maître-esclave.
- B. Une bascule RS synchronisée sur front descendant.
 - C. Une bascule RS synchronisée sur état.
 - D. Aucune de ces réponses.
- 22. Une bascule RS asynchrone (R et S sont actifs à l'état haut) peut être fabriquée à l'aide de :
 - A. Deux portes NON-ET.
 - B. Deux portes OU EXCLUSIF.
 - C. Une porte NON-OU et une porte NON-ET.
- D. Deux portes NON-OU.
- 23. Lorsque les entrées R et S d'une bascule RS asynchrone active à l'état haut sont à 0 :
 - A. La sortie est inversée.
 - B. Cet état est interdit.
 - C. La sortie ne change pas.
 - D. Aucune de ces réponses.
- 24. Lorsque les entrées \overline{R} et \overline{S} d'une bascule \overline{RS} asynchrone sont à 0 :
- A. Cet état est interdit.
 - B. La sortie ne change pas.
 - C. La sortie est inversée.
 - D. Aucune de ces réponses.
- 25. Une bascule RS maître-esclave:
 - A. Copie l'entrée R sur la sortie Q à chaque front montant de l'horloge.
 - B. Peut modifier la sortie Q uniquement sur les fronts montants de l'horloge.
- C. Peut modifier la sortie Q uniquement sur les fronts descendants de l'horloge.
 - D. Peut modifier la sortie Q sur les fronts montants et descendants de l'horloge.

- 26. Une bascule D maître-esclave:
 - A. Modifie la sortie Q uniquement sur les fronts montants de l'horloge.
- B. Modifie la sortie Q uniquement sur les fronts descendants de l'horloge.
 - C. Modifie la sortie Q sur les fronts montants et descendants de l'horloge.
 - D. Aucune de ces réponses.

Soit les deux figures ci-dessous :

 $C \rightarrow D \rightarrow Q$

Figure 1

Figure 2

- 27. Le symbole de la figure 1 représente :
 - A. Une bascule D maître-esclave.
 - B. Une bascule D synchronisée sur état.
 - C. Une bascule D synchronisée sur front descendant.
- D. Aucune de ces réponses.
- 28. Le symbole de la figure 2 représente :
 - A. Une bascule D maître-esclave.
- B. Une bascule D synchronisée sur front descendant.
 - C. Une bascule D synchronisée sur état.
 - D. Aucune de ces réponses.
- 29. Lorsque les entrées J et K d'une bascule JK synchronisée sur front descendant sont à 0 :
 - A. La sortie bascule (elle est inversée).
 - B. Cet état est interdit.
- C. La sortie ne change pas.
 - D. Aucune de ces réponses.
- 30. Lorsque les entrées J et K d'une bascule JK synchronisée sur front montant sont à 1 :
- A. La sortie bascule (elle est inversée).
 - B. Cet état est interdit.
 - C. La sortie ne change pas.
 - D. Aucune de ces réponses.