$egin{array}{l} \mathbf{ALGO} \\ \mathbf{MCQ} \end{array}$

Consider the binary tree $AB = \{1, 2, 3, 5, 6, 7, 10, 11, 13, 15, 26\}$ represented using the hierarchical numbering.

1. AB is a binary tree?

- (a) degenerate
- (b) complete
- (c) perfect
- (d) proper
- (e) nothing in particular

2. The height of the tree AB is ?

- (a) 2
- (b) 3
- (c) 4
- (d) 5
- (e) 6

3. The internal and "complete" path lengths of AB are equal to?

- (a) 10,14
- (b) 11,24
- (c) 13, 24
- (d) 11,13
- (e) 11, 26

4. The depth of the node 13 of AB is equal to?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4

5. The postorder traversal, of the tree AB, is ?

- (a) 1, 2, 5, 10, 11, 3, 6, 13, 26, 7, 15
- (b) 2, 10, 5, 11, 1, 6, 26, 13, 3, 7, 15
- (c) 10, 11, 5, 2, 26, 13, 6, 15, 7, 3, 1
- (d) 1, 2, 3, 5, 6, 7, 10, 11, 13, 15, 26

Consider the general tree AG:

$$< A, < B, < E, < L, \emptyset >, < M, \emptyset >>, < F, \emptyset >, < G, < N, \emptyset >>, < O, \emptyset >>, < H, \emptyset >>, < C, < I, \emptyset >>, < D, < J, < P, \emptyset >, < Q, \emptyset >>, < K, \emptyset >>>$$

Where the letters are the nodes and where $\emptyset = empty forest$

- 6. The depth of the nodes G and K of the tree AG is ?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) 4
- 7. The path length of the tree AG is?
 - (a) 9
 - (b) 17
 - (c) 21
 - (d) 26
 - (e) 35
- 8. The postorder traversal of the tree AG is ?
 - (a) A, B, E, L, M, F, G, N, O, H, C, I, D, J, P, Q, K
 - (b) L, M, E, F, N, O, G, H, B, I, C, P, Q, J, K, D, A
 - (c) A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q
- 9. How many orders does the depth-first traversal of a general tree induce?
 - (a) 1
 - (b) 2
 - (c) 2 and a half
 - (d) 3
 - (e) 4
- 10. The height of a general tree that has only a root node is?
 - (a) -1
 - (b) 0
 - (c) 1

Monday, 26 February

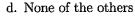
Question 11

Select the correct answer(s)

- a. \mathbb{R}^3 is a \mathbb{R} -vector space.
- b. $\mathbb{R}[X]$ is a \mathbb{R} -vector space.

- c. The set of all the increasing real sequences is a \mathbb{R} -vector space.
- d. The set $\{f: \mathbb{R} \longrightarrow \mathbb{R}, f(0) = 1\}$ is a \mathbb{R} -vector space.
- e. None of the others

Question 12


Let E be a \mathbb{R} -vector space and F a linear subspace of E. Then:

b.
$$\forall (u, v) \in E^2, u + v \in F$$

c.
$$\forall (u,v) \in F^2, u+v \in F$$

Question 13

Consider the set $E = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 1\}.$

- a. E is a plane of \mathbb{R}^3
- b. E is a line of \mathbb{R}^3
- c. E is a linear subspace of \mathbb{R}^3

d. E is not a linear subspace of \mathbb{R}^3

Question 14

Consider the set $E = \{(x, y, z) \in \mathbb{R}^3, xy^3 = 0\}.$

- a. $(1,0) \in E$
- b. $0_{\mathbb{R}^3} \in E$
- c. E is a linear subspace of \mathbb{R}^3
- d. E is a line of \mathbb{R}^3
- e. None of the others

Question 15

In \mathbb{R}^3 , consider the vectors u = (1,0,0), v = (0,-1,1) and w = (2,-2,2). Then:

- a. w is a linear combination of u and v.
- b. w is not a linear combination of u and v.

Question 16

In \mathbb{R}^3 , consider the vectors u = (1,0,0) and v = (0,0,1)

- a. u is a linear combination of u and v.
 - b. (0,1,0) is a linear combination of u and v.
 - c. (0,0,0) is a linear combination of u and v.
 - d. None of the others

Question 17

Let E be a \mathbb{R} -vector space, F and G two linear subspaces of E. Then:

- a. $F \cap G$ is a linear subspace of E.
- b. $F \cup G$ is a linear subspace of E.
- c. None of the others

Question 18

Let E be a \mathbb{R} -vector space, F and G two linear subspaces of E and $u \in E$. The property " $u \in F + G$ " means that:

$$\exists (u_1, u_2) \in F \times G \text{ such that } u = u_1 + u_2$$

- a. True
- b. False

Question 19

In \mathbb{R}^2 , consider $F = \{(x, y) \in \mathbb{R}^2, \ x = 0\}$ and $G = \{(x, y) \in \mathbb{R}^2, \ y = 0\}$. Then:

- a. $(1,0) \in F$
- b. $(0,1) \in G$
- $(1,1) \in F + G$
 - d. $(3,0) \in F \cap G$
 - e. None of the others

Question 20

To get the points at this question, select all the answers except the last one!

- \bigvee a. To prepare
 - b. my B3 exams
 - c. first of all, I review the lecture
 - d. THEN I REVIEW THE TUTORIALS (TD)
 - e. Oops! I did not read the whole text of the question :(

For questions 21-30, there may exist more than one correct answers.

21. Kinematics is the branch of physics that studies

- a. Motion, independently of its cause.
- b. The causes of motion.
- c. Cinema.
- d. None of the above.

22. A material point is

- a. A very small object.
- b. A system whose spatial dimensions can be neglected.
- c. A system whose rotation around itself can be neglected.
- d. None of the above.

23. The Earth can be considered a material point when studying

- a. Its rotation around its own axis.
- b. Its rotation around the Sun.

$$\int \qquad \text{a.} \quad \overrightarrow{OM} = r.\overrightarrow{u_r}$$

b.
$$\overrightarrow{OM} = \begin{pmatrix} r \\ 0 \end{pmatrix}$$

c.
$$\overrightarrow{OM} = \begin{pmatrix} 0 \\ r \end{pmatrix}$$

d. $\overrightarrow{OM} = \begin{pmatrix} r \\ \theta \end{pmatrix}$

d.
$$\overrightarrow{OM} = \begin{pmatrix} r \\ \theta \end{pmatrix}$$

25. If $\vec{v} \cdot \vec{a} > 0$, then

- a. The two vectors point towards the same direction.
- b. The two vectors point towards opposite directions.
- c. The motion is accelerated.
- d. Only the trajectory changes.

- 26. Consider a point M that is moving according to the equations: $\begin{cases} x(t) = 5\cos(2t) \\ y(t) = 5\sin(2t) \end{cases}$
 - a. The components of the velocity vector are constant.

b. The norm of the velocity vector is constant.

- c. The motion is uniform.
- d. The acceleration is zero.
- 27. For the same point M:
 - a. The trajectory is rectinlinear.

- b. The trajectory is circular.
- c. The trajectory is elliptical.
- d. The trajectory is sinusoidal.
- 28. Consider a point M moving on a trajectory given by $y = -5x^2 + 4x$. The ground is assumed to be the x-axis.
 - a. Point M hits the ground at x = 5 and x = -4.
 - b. Point M hits the ground at x = -5 and x = 4.

- c. Point M hits the ground at x = 0 and $x = \frac{4}{5}$.
- d. Point M hits the ground at x = 0 and $x = \frac{2}{5}$.
- 29. In the case of uniform circular motion, we can say that:
 - a. $\dot{\theta} = 0$
- b. $\ddot{\theta} = 0$
- c. $\dot{r}=0$
- d. $\ddot{r}=0$
- 30. The acceleration vector in polar coordinates is written as:

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\overrightarrow{u_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\overrightarrow{u_{\theta}}$$

- In the case of a uniform circular motion, we can say that:
 - a. $\vec{a} = 0$
- b. $\vec{a} = (-r\dot{\theta}^2)\overrightarrow{u_r} + (r\ddot{\theta})\overrightarrow{u_{\theta}}$ c. $\vec{a} = (-r\dot{\theta}^2)\overrightarrow{u_r}$
- - d. $\vec{a} = (\ddot{r} r\dot{\theta}^2)\vec{u_r} + (2\dot{r}\dot{\theta})\vec{u_\theta}$