$_{ m MCQ}^{ m Algo}$

- 1. In a binary tree, a node that has no child is?
 - (a) a root
 - (b) an internal node
 - (c) an external node
 - (d) a leaf
- 2. In a binary tree, the path obtained from the root by following just the left links is called?
 - (a) the right path
 - (b) the left edge
 - (c) the left branch
 - (d) the left metalink
- 3. In a binary tree, a node that has just one right child is called?
 - (a) a root
 - (b) an internal node
 - (c) a right external node
- (d) a right single internal node
 - 4. The size of a non empty binary tree is?
 - (a) ≥ -1
 - (b) ≥ 0
- (c) ≥ 1
 - 5. A proper binary tree is a binary tree in which?

- (a) every node is single
- (b) every level is completely filled except the last, which is filled from left to right
- (c) every node is double except at the last level
- (d) every node is double
- 6. A binary tree whose nodes are all singles is?
- 🧹 (a) degenerate
 - (b) complete
 - (c) perfect
 - (d) proper
- 🎺 (e) filiform

- 7. If EPL(B) is the external path length of a binary tree B, then EAD(B) (the external average depth of B) is equal to ?
- \mathcal{N} (a) EPL(B)/nl with nl the number of leaves of B
 - (b) EPL(B)/n with n the number of nodes of B
 - (c) EPL(B)/n with n the number of external nodes of B
 - (d) EPL(B).n with n the number of external nodes of B
 - 8. The binary tree $B = \{E, 0, 1, 00, 01, 000, 001, 0010, 0011, 00100, 00101\}$ is ?
 - (a) degenerate
 - (b) complete
 - (c) perfect
 - (d) proper
 - (e) nothing in particular
 - 9. In the depth-first traversal of a binary tree, which orders are induced?
 - √ (a) Preorder
 - √ (b) Inorder
 - (c) Intermediate
 - $\langle /$ (d) Postorder
- 10. How many orders does the depth-first traversal of a binary tree induce?
 - (a) 1
 - (b) 2
 - (c) 2 and a half
- (d) 3
 - (e) 4

MCQ 2

Monday, 5 February

Question 11

Let $P(X) = (X^2 + X)(X + 1)^2 \in \mathbb{R}[X]$. Then:

- a. -1 is a root of P of multiplicity exactly 2
- \sqrt{b} . -1 is a root of P of multiplicity exactly 3
 - c. P admits two different roots in $\mathbb R$
 - d. None of the others

Question 12

Select the expressions below which are products of irreducible polynomials in $\mathbb{R}[X]$?

- V a. $X(X^2+1)$
 - b. $X(X^2-1)$
- $(X 1)^3$
 - d. None of these expressions

Question 13

Let (E): xy' + 2y = 0. The solutions of (E) on $]0, +\infty[$ are the functions of the form:

- a. $x \longmapsto ke^{-2x}$ where $k \in \mathbb{R}$.
- b. $x \longmapsto -kx^2$ where $k \in \mathbb{R}$.
- - d. $x \longmapsto \frac{k}{x}$ where $k \in \mathbb{R}$.
 - e. None of the others

Question 14

Let $(E): y'' + 2y' - 3y = x^2$ on \mathbb{R} . The solutions of the homogeneous equation associated to (E) are the functions of the form:

- a. $x \longmapsto k_1 e^{-x} + k_2 e^{3x}$ where $(k_1, k_2) \in \mathbb{R}^2$.
- b. $x \longmapsto k_1 e^x + k_2 e^{-3x}$ where $(k_1, k_2) \in \mathbb{R}^2$.
- c. $x \mapsto e^x (k_1 \cos(3x) + k_2 \sin(3x))$ where $(k_1, k_2) \in \mathbb{R}^2$.
- d. None of the others

Question 15

Let (E): $y'' - y' + y = 3x^3 - 1$. To find a particular solution y_p of (E), we can search y_p as a polynomial

- a. of degree 1
- b. of degree 2
- \checkmark c. of degree 3
 - d. None of the others

Question 16

Let (E): y'' + y' + y = x + 1.

- a. The function $y: x \mapsto x$ is a particular solution of (E)
 - b. The function $y: x \mapsto x^2$ is a particular solution of (E)
 - c. The function $y: x \longmapsto 2x$ is a particular solution of (E)
 - d. None of the others

Question 17

Select the function(s) below which is(are) continuous on [-8,8]?

d. None of these functions is continuous on [-8, 8].

Question 18

Let the function f be defined and continuous on \mathbb{R} such that f(-2) = 4 and f(3) = -1. Then:

a The equation f(x) = 0 admits at least one solution on \mathbb{R} .

b. The equation f(x) = 0 admits exactly one solution on \mathbb{R} .

c. We don't have enough information to know whether the equation f(x) = 0 admits at least one solution on \mathbb{R} .

Question 19

Consider a function f, infinitely differentiable on \mathbb{R} . The Taylor-Young's formula at the order 3 as x approaches 0 is:

a.
$$f(x) = f(0) + xf'(0) + x^2f''(0) + x^3f^{(3)}(0) + x^3\varepsilon(x)$$
 where $\lim_{x\to 0} \varepsilon(x) = 0$.

b.
$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \frac{x^3}{3}f^{(3)}(0) + x^3\varepsilon(x)$$
 where $\lim_{x\to 0}\varepsilon(x) = 0$.

 $\int c. \ f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f^{(3)}(0) + x^3\varepsilon(x) \text{ where } \lim_{x \to 0} \varepsilon(x) = 0.$

d. None of the others

Question 20

Consider the function $f: x \longmapsto x^{10}$. The Taylor-Young's formula for f at the order 3 as x approaches 0 is:

$$\sqrt{}$$

a.
$$f(x) = 0 + x^3 \varepsilon(x)$$
 where $\lim_{x \to 0} \varepsilon(x) = 0$

b.
$$f(x) = 1 + 10x + 45x^2 + 120x^3 + x^3\varepsilon(x)$$
 where $\lim_{x\to 0} \varepsilon(x) = 0$

c. None of the others

Test 1 Computer Architecture

Monday 5 February 2024

For all the questions, one or more answers are possible.

21. What is the symbol below?

- A. A master-slave RS flip-flop.
- B. A negative-edge-triggered RS flip-flop.
- C. A gated RS latch.
- D. None of these answers.
- 22. An RS latch (R and S are active-high) can be made up of:
 - A. Two NAND gates.
 - B. Two EXCLUSIVE OR gates.
 - C. A NOR gate and a NAND gate.
 - D. Two NOR gates.
- 23. When both the R and S inputs of an active-high RS latch are zeros:
 - A. The output is inverted.
 - B. This state is forbidden.
- $\sqrt{}$ C. The output does not change.
 - D. None of these answers.
- 24. When both the \overline{R} and \overline{S} inputs of a \overline{RS} latch are zeros:
 - A. This state is forbidden.
 - B. The output does not change.
 - C. The output is inverted.
 - D. None of these answers.
- 25. A master-slave RS flip-flop:
 - A. Copies the R input into the Q output on each positive edge of the clock signal.
 - B. Can change the Q output on each positive edge of the clock signal only.
 - C. Can change the Q output on each negative edge of the clock signal only.
 - D. Can change the Q output on each positive edge and each negative edge of the clock signal.

- 26. A master-slave D flip-flop:
 - A. Affects the Q output on each positive edge of the clock signal only.
 - B. Affects the Q output on each negative edge of the clock signal only.
 - C. Affects the Q output on each positive edge and each negative edge of the clock signal.
 - D. None of these answers.

Let us consider the two following figures:

 $C \longrightarrow D \longrightarrow \overline{Q}$

Figure 1

Figure 2

- 27. The symbol, shown in Figure 1, is:
 - A. A master-slave D flip-flop.
 - B. A gated D latch.
 - C. A negative-edge-triggered D flip-flop.
 - D. None of these answers.
- 28. The symbol, shown in Figure 2, is:
 - A. A master-slave D flip-flop.
 - B. A negative-edge-triggered D flip-flop.
 - C. A gated D latch.
 - D. None of these answers.
- 29. When both the J and K inputs of a negative-edge-triggered JK flip-flop are zeros:
 - A. The output toggles (it is inverted).
 - B. This state is forbidden.
 - C. The output does not change.
 - D. None of these answers.
- 30. When both the J and K inputs of a positive-edge-triggered JK flip-flop are ones:
 - A. The output toggles (it is inverted).
 - B. This state is forbidden.
 - C. The output does not change.
 - D. None of these answers.