| EPITA /S₂ | | May 2017 | |-----------|------------|----------| | NAMF : | FIRSTNAMF: | GROUP : | ## Physics final exam n°2 Calculators and extra-documents are not allowed. Please answer on exam sheets ## Exercise 1 (5 points) Parts 1 and 2 are independent. 1- A calorimeter of neglected heat capacity is containing a mass $m_1 = 200g$ of water at initial temperature $\theta_1 = 70$ °C. One puts an ice cube of mass $m_2 = 80g$ which was in a fridge at temperature $\theta_2 = -20$ °C. Express the amount of heat Q which is exchanged by water and ice cube. Deduce from it the equilibrium temperature θ_e . We assume that the whole ice cube melts. Data: Fusion latent heat of ice: $L_f = 300.10^3 \text{Jkg}^{-1}$. Heat capacity of water per mass unit: $c_w = 4.10^3 J K^{-1} kg^{-1}$. Heat capacity of ice per mass unit: $c_i = 2.10^3 J K^{-1} kg^{-1}$. | 2- A calorimeter is containing a mass $m_1 = 150g$ of water. The initial temperature of the entire system is θ_1 =20°C. One adds a mass m_2 = 250g of water at temperature θ_2 =70°C. Compute the heat capacity C_{cal} of calorimeter. One assumes that the equilibrium temperature is θ_e =50°C. The heat capacity of water per mass unit is given: $c_w = 4.10^3 J K^{-1} kg^{-1}$. | |--| | | | | | | | | | | | | | | | | | Exercise 2 (7 points) Questions 1, 2 and 3 are independent. | | 1- a) Write the elementary energy dU and the elementary enthalpy dH of an ideal gas.
b) Deduce from it the Meyer's relation which reads: $C_p - C_V = nR$ and is true for an ideal gas. | | | | | | | | | | | | | | | | qu
b) U
he | Write the first principle of thermodynamics which expresses dU in terms of the elementary partities δQ et δW . Use this principle and Meyer's relation for an ideal gas to prove that the elementary exchanged at for n moles of ideal gas at constant pressure reads: $\delta Q_p = \text{n.c.p.dT}$. (If pressure is constant one s dV/V = dT/T). | |------------------|--| | | | | | | | | | | | | | | | | 3- Wri | te the work W of pressure forces for the following cases: | | a)
b) | Isobaric relaxation at pressure P _A from volume V _A to volume V _B . Adiabatic compression from volume V _A to volume V _B in terms of temperatures T _A , T _B and the molar heat capacity at constant volume c _v . | ## Exercise 3 (8 points) A thermal engine works by following the so-called Beau de Rochas' cycle: n moles of ideal gas is following the cycle ABCDA which is sketched below. The transformations DA and BC are adiabatic whereas the transformations CD and AB isochoric. Oen defines $a = V_2 / V_1$ the ratio between volumes (called the compression rate). Remember that the molar capacity \mathbf{c}_v is constant during this cycle. 1- Use Laplace's law to prove the following relations: $$T_B(V_1)^{\gamma-1} = T_C(V_2)^{\gamma-1}$$ $$T_A(V_1)^{\gamma-1} = T_D(V_2)^{\gamma-1}$$ **EPITA / S₂ May 2017** |
an coming of compe | ork W and the va |
 | | |------------------------|------------------|------|--| 3- a) Express the efficiency of this engine defined as $r = \frac{Q_{AB} + Q_{CD}}{Q_{AB}}$ in terms of temperatures. b) Recover an expression of this efficiency in terms of a and γ (a = V_2/V_1). Hint: $\frac{T_C - T_D}{T_B - T_A} = \frac{T_D}{T_A} = \frac{T_C}{T_B}$ c) Compute numerically with a = 9 and $\gamma = 1,4$. One gives: $9^{-0,4} \approx 0,4$