S2PA B4 COR CCISR

Exercice 1 : une intégrale pour démarrer

Via une intégration par parties, calculer $I = \int_1^e \frac{\ln(x)}{x^2} dx$. Vous ferez clairement apparaître u, u', v et v'.

On pose $u(x)=\ln(x)$ et $v'(x)=\frac{1}{x^2}.$ Ainsi, $u'(x)=\frac{1}{x}$ et $v(x)=-\frac{1}{x}.$ D'où

$$I = \left[-\frac{\ln(x)}{x} \right]_{1}^{e} - \int_{1}^{e} -\frac{1}{x^{2}} dx = -\frac{1}{e} - \left[\frac{1}{x} \right]_{1}^{e} = -e^{-1} - (e^{-1} - 1) = 1 - 2e^{-1}$$

Exercice 2 : suites en vrac

 $Les \ deux \ questions \ sont \ ind\'ependantes.$

1. On considère les 6 bouts de phrases suivantes :

bornée - non bornée - monotone - non monotone - convergente - divergente

Pour chaque phrase ci-dessous, remplir les pointillés à l'aide de 3 bouts de phrases différents afin que la phrase soit vraie.

- (a) La suite (4^n) est non bornée , monotone et divergente.
- (b) La suite $((-1)^n)$ est bornée , non monotone et divergente.
- (c) La suite $(n + (-1)^n)$ est non bornée , non monotone et divergente.
- 2. On considère les 6 bouts de phrases suivantes :

convergente vers θ - 0 - $+\infty$ - divergente - on ne peut rien dire - convergente

Pour chaque phrase ci-dessous, remplir les pointillés à l'aide de bouts de phrases afin que la phrase soit vraie.

- (a) Si une suite (u_n) est convergente alors (u_{3n}) est convergente.
- (b) Soit (u_n) une suite. Si la limite de (u_{2n}) est 0 alors la limite de (u_n) est on ne peut rien dire.
- (c) Soit (u_n) une suite. Si les suites (u_{3n}) et (u_{3n+1}) convergent vers 0 alors la suite (u_n) est on ne peut rien dire.
- (d) Soit (u_n) une suite. Si les suites (u_{2n}) et (u_{2n+1}) convergent vers 0 alors la suite (u_n) est convergente vers 0.

Exercice 3: suites adjacentes

Soient les suites (u_n) et (v_n) définies par : $u_0 = 5$, $v_0 = 15$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{3u_n + v_n}{4}$ et $v_{n+1} = \frac{u_n + 5v_n}{6}$ Soit (w_n) définie pour tout entier $n \in \mathbb{N}$ par : $w_n = v_n - u_n$.

- 1. Étude de la suite (w_n) .
 - (a) Montrer que la suite (w_n) est géométrique de raison $\frac{7}{12}$.

Soit $n \in \mathbb{N}$. On a

$$w_{n+1} = v_{n+1} - u_{n+1} = \frac{u_n + 5v_n}{6} - \frac{3u_n + v_n}{4} = \frac{2u_n + 10v_n - 9u_n - 3v_n}{12} = \frac{7v_n - 7u_n}{12} = \frac{7}{12}(v_n - u_n) = \frac{7}{12}w_n$$

La suite (w_n) est donc géométrique de raison $\frac{7}{12}$

(b) En déduire l'expression de w_n en fonction de n.

$$\forall n \in \mathbb{N}, \ w_n = \left(\frac{7}{12}\right)^n w_0 = \left(\frac{7}{12}\right)^n (v_0 - u_0) = \left(\frac{7}{12}\right)^n \times 10$$

(c) De la question précédente, trouver le signe de la suite (w_n) .

Le signe de (w_n) est immédiat : $\forall n \in \mathbb{N}, w_n \geq 0$.

2. En utilisant la question précédente, montrer que les suites (u_n) et (v_n) sont adjacentes.

Soit $n \in \mathbb{N}$. On a:

- $u_{n+1} u_n = \frac{3u_n + v_n}{4} u_n = \frac{3u_n + v_n 4u_n}{4} = \frac{v_n u_n}{4} = \frac{1}{4}w_n \ge 0$. La suite (u_n) est donc croissante.
- $v_{n+1} v_n = \frac{u_n + 5v_n}{6} v_n = \frac{u_n + 5v_n 6v_n}{6} = \frac{u_n v_n}{6} = -\frac{1}{6}w_n \le 0$. La suite (v_n) est donc décroissante.
- $v_n u_n = w_n = \left(\frac{7}{12}\right)^n \times 10$. Comme $-1 < \frac{7}{12} < 1$, $\lim_{n \to +\infty} \left(\frac{7}{12}\right)^n = 0$, $\lim_{n \to +\infty} v_n u_n = 0$.
- En conclusion, les suites (u_n) et (v_n) sont adjacentes.
- 3. La suite (v_n) est-elle convergente? Justifier en énonçant un théorème.

Les suites (u_n) et (v_n) étant adjacentes, elles convergent (vers une même limite $\ell \in \mathbb{R}$). Donc, la suite (v_n) converge.

Exercice 4 : comparaison de suites

1. Soient (u_n) et (v_n) deux suites ne s'annulant jamais. Donner deux définitions différentes pour :

 $u_n \sim v_n \text{ en } +\infty$:

$$u_n \sim v_n \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 1 \iff \exists$$
 une suite (ε_n) telle que pour n grand $u_n = v_n(1 + \varepsilon_n)$ avec $\lim_{n \to +\infty} \varepsilon_n = 0$

 $u_n = o(v_n)$ en $+\infty$:

$$u_n = o(v_n) \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 0 \iff \exists \text{ une suite } (\varepsilon_n) \text{ telle que pour n grand } u_n = v_n \varepsilon_n \text{ avec } \lim_{n \to +\infty} \varepsilon_n = 0$$

- 2. Comparer en $+\infty$ les suites (u_n) et (v_n) suivantes à l'aide de l'un des deux comparateurs de Landau suivant : \sim ou $= o(\cdot)$.
 - (a) $u_n = 1 3n^2$ et $v_n = -3n^2 + 2n 4n$

$$\frac{u_n}{v_n} = \frac{-3n^2\left(-\frac{1}{3n^2} + 1\right)}{-3n^2\left(1 - \frac{2}{2n} + \frac{4}{3n^2}\right)} = \frac{-\frac{1}{3n^2} + 1}{1 - \frac{2}{2n} + \frac{4}{3n^2}}$$

Ainsi, $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$. Donc, $u_n \sim v_n$ en $+\infty$.

(b)
$$u_n = e^{2n} - \sqrt{n}$$
 et $v_n = n + 1$.

$$\frac{v_n}{u_n} = \frac{n(1+\frac{1}{n})}{e^{2n}(1-\frac{\sqrt{n}}{e^{2n}})} = \frac{n}{e^{2n}} \times \frac{1+\frac{1}{n}}{1-\frac{\sqrt{n}}{e^{2n}}}. \text{ Par croissance comparée, } \lim_{n \to +\infty} \frac{n}{e^{2n}} = 0 \text{ et } \lim_{n \to +\infty} \frac{\sqrt{n}}{e^{2n}} = 0.$$
 Ainsi $\lim_{n \to +\infty} \frac{v_n}{u} = 0 \times \frac{1}{1} = 0.$ Donc, $v_n = o(u_n).$

Exercice 5: une suite

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = \sum_{k=1}^n \frac{1}{1+\sqrt{k}}$

1. Montrer que pour tout
$$n \in \mathbb{N}^*$$
, $u_n \ge \frac{n}{1 + \sqrt{n}}$.

Soit
$$k \in [1, n]$$
. On a $\frac{1}{1 + \sqrt{k}} \ge \frac{1}{1 + \sqrt{n}}$. Ainsi,

$$u_n = \sum_{k=1}^n \frac{1}{1 + \sqrt{k}} \ge \sum_{k=1}^n \frac{1}{1 + \sqrt{n}} = n \times \frac{1}{1 + \sqrt{n}}$$

2. En déduire le comportement de (u_n) en $+\infty$.

$$\frac{n}{1+\sqrt{n}} = \frac{n}{\sqrt{n}(\frac{1}{\sqrt{n}}+1)} = \frac{\sqrt{n}}{\frac{1}{\sqrt{n}}+1} \xrightarrow[n \to +\infty]{} + \infty$$

Ainsi, par le théorème de comparaison, $u_n \underset{n \to +\infty}{\longrightarrow} +\infty$

Exercice 6 : suite récurrente

On considère la fonction $f: x \longmapsto \frac{x^2 - x + 3}{3}$. On définit alors la suite (u_n) par $\begin{cases} u_{n+1} = f(u_n) \\ u_0 \in \mathbb{R}^+ \ donn\'e \end{cases}$

1. Supposons que (u_n) converge vers $\ell \in \mathbb{R}$. Trouver les valeurs possibles de ℓ .

On sait que, dans ce cas là, $f(\ell) = \ell$. Or

$$f(\ell) = \ell \iff \ell^2 - \ell + 3 = 3\ell \iff \ell^2 - 4\ell + 3 = 0 \iff (\ell - 1)(\ell - 3) = 0$$

Ainsi, si la suite (u_n) converge, elle converge vers 1 ou 3.

2. On suppose que $u_0 = 2$. On admet le tableau de variations de f suivant :

x	0	$\frac{1}{2}$		1	3	+∞
f'(x)	_	0	+	+	+	
f(x)	1	11/12		-1		+∞

- (a) Montrer, par récurrence, que $\forall n \in \mathbb{N}, u_n \in]1,3[$.
 - $u_0 = 2 \in]1,3[$ donc la propriété est vraie au rang 0.

- Supposons la propriété vraie pour un $n \in \mathbb{N}$. On a donc $1 < u_n < 3$. Par le tableau de variations de f, on constate que f est strictement croissante sur $[\frac{1}{2}, +\infty[$. Ainsi, $f(1) < f(u_n) < f(3)$. Or par le tableau, f(1) = 1 et f(3) = 3. Ainsi, $1 < u_{n+1} < 3$. La propriété est donc vraie au rang n + 1.
- En conclusion, $\forall n \in \mathbb{N}, u_n \in]1, 3[$.
- (b) Montrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = \frac{(u_n 1)(u_n 3)}{3}$. En déduire la monotonie de (u_n) .

$$u_{n+1} - u_n = \frac{u_n^2 - u_n + 3}{3} - u_n = \frac{u_n^2 - u_n + 3 - 3u_n}{3} = \frac{u_n^2 - 4u_n + 3}{3} = \frac{(u_n - 1)(u_n - 3)}{3}$$

Par la question précédente, pour tout $n \in \mathbb{N}$, $u_n - 1 > 0$ et $u_n - 3 < 0$. Ainsi, $\forall n \in \mathbb{N}$, $u_{n+1} - u_n < 0$. La suite est donc (strictement) décroissante.

(c) La suite (u_n) est-elle convergente? Si oui, donner sa limite.

 (u_n) est décroissante et minorée par 1. Donc, elle converge. Notons ℓ sa limite. Par la question 1., $\ell = 1$ ou $\ell = 3$. Or comme (u_n) est décroissante, $\forall n \in \mathbb{N}, u_n < u_0 < 3$. En faisant tendre n vers $+\infty$, on a $\ell \leq u_0 < 3$. Donc $\ell = 1$.